--- license: mit datasets: - nlphuji/flickr30k language: - en --- # Dataset Card for Conditional Latent Coding (CLC) ## Dataset Description - **Repository:** [GitHub - ydchen0806/CLC](https://github.com/ydchen0806/CLC) - **Paper:** [Conditional Latent Coding with Learnable Synthesized Reference for Deep Image Compression (AAAI25 Oral)](https://arxiv.org/pdf/2502.09971) - **Authors:** Siqi Wu†, Yinda Chen†, Dong Liu, Zhihai He* - **Contact:** cyd0806@mail.ustc.edu.cn ## Overview This repository contains datasets and pre-trained models for the **Conditional Latent Coding (CLC)** framework, a state-of-the-art deep image compression method. The implementation is built on [CompressAI](https://github.com/InterDigitalInc/CompressAI) and [TCM](https://github.com/jmliu206/LIC_TCM). ## Dataset Structure ### Core Components 1. **Reference Features** (`flicker_features.pkl`): - Precomputed feature dictionary using spatial pyramid pooling and k-means clustering - Format: Pickle file containing clustered image features 2. **Training Dataset** (`Flickr2K.hdf5`): - Contains 2,650 high-resolution images (256×256 patches) - HDF5 structure: ``` /Flickr2K ├── image_0001 ├── image_0002 └── ... ``` 3. **Pre-trained Models**: - Multiple rate points (0.0025-0.05 bpp): - `0.0025checkpoint_best.pth.tar` - `0.05checkpoint_best.pth.tar` - Compatibility: PyTorch 1.7+ with CUDA support ## 📜 Citation If you use this model or find it useful, please cite: ```bibtex @article{wu2025conditional, title={Conditional Latent Coding with Learnable Synthesized Reference for Deep Image Compression}, author={Wu, Siqi and Chen, Yinda and Liu, Dong and He, Zhihai}, journal={AAAI Conference on Artificial Intelligence}, year={2025} } ``` ## 📧 Contact For questions or collaborations, feel free to reach out: - **GitHub**: [CLC Repository](https://github.com/ydchen0806/CLC) - **Email**: [cyd3933529@gmail.com](mailto:cyd0806@mail.ustc.edu.cn)