ChenyangLyu commited on
Commit
6b41470
·
verified ·
1 Parent(s): 16b439b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -22
README.md CHANGED
@@ -1,23 +1,85 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: audio
5
- dtype: audio
6
- - name: text
7
- dtype: string
8
- - name: emotion
9
- dtype: string
10
- - name: speaker
11
- dtype: string
12
- splits:
13
- - name: train
14
- num_bytes: 3610108297.64
15
- num_examples: 4160
16
- download_size: 3077432286
17
- dataset_size: 3610108297.64
18
- configs:
19
- - config_name: default
20
- data_files:
21
- - split: train
22
- path: data/train-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ---
 
1
+ # CSEMOTIONS: High-Quality Mandarin Emotional Speech Dataset
2
+
3
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
4
+
5
+ **CSEMOTIONS** is a high-quality Mandarin emotional speech dataset designed for expressive speech synthesis, emotion recognition, and voice cloning research. The dataset contains studio-quality recordings from six professional voice actors across seven carefully curated emotional categories, supporting research in controllable and natural language speech generation.
6
+
7
+
8
+ ## Dataset Summary
9
+
10
+ - **Name:** CSEMOTIONS
11
+ - **Total Duration:** ~10 hours
12
+ - **Speakers:** 10 (5 male, 5 female) native Mandarin speakers, all professional voice actors
13
+ - **Emotions:** Neutral, Happy, Angry, Sad, Surprise, Disgust, Fear
14
+ - **Language:** Mandarin Chinese
15
+ - **Sampling Rate:** 48kHz, 24-bit PCM
16
+ - **Recording Setting:** Professional studio environment
17
+ - **Evaluation Prompts:** 100 per emotion, in both English and Chinese
18
+
19
+ ## Dataset Structure
20
+
21
+ Each data sample includes:
22
+
23
+ - **audio**: The speech waveform (48kHz, 24-bit, WAV)
24
+ - **transcript**: The transcribed sentence in Mandarin
25
+ - **emotion**: One of {neutral, happy, angry, sad, surprise, disgust, fear}
26
+ - **speaker_id**: An anonymized speaker identifier (e.g., `S01`)
27
+ - **gender**: Male/Female
28
+ - **prompt_id**: Unique identifier for each utterance
29
+
30
+
31
+ ## Intended Uses
32
+
33
+ CSEMOTIONS is intended for:
34
+
35
+ - Expressive text-to-speech (TTS) and voice cloning systems
36
+ - Speech emotion recognition (SER) research
37
+ - Cross-lingual and cross-emotional synthesis experiments
38
+ - Benchmarking emotion transfer or disentanglement models
39
+
40
+ ## Dataset Details
41
+
42
+ | Property | Value |
43
+ |-------------------------|---------------------------------------|
44
+ | Total audio hours | ~10 |
45
+ | Number of speakers | 6 (3♂, 3♀, anonymized IDs) |
46
+ | Emotions | Neutral, Happy, Angry, Sad, Surprise, Disgust, Fear |
47
+ | Language | Mandarin Chinese |
48
+ | Format | WAV, mono, 48kHz/24bit |
49
+ | Studio quality | Yes |
50
+
51
+ | Label | Duration | Sentences |
52
+ | -------- | -------- | --------- |
53
+ | Sad | 1.73h | 546 |
54
+ | Angry | 1.43h | 769 |
55
+ | Happy | 1.51h | 603 |
56
+ | Surprise | 1.25h | 508 |
57
+ | Fearful | 1.92h | 623 |
58
+ | Playfulness | 1.23h | 621 |
59
+ | Neutral | 1.14h | 490 |
60
+ | **Total**| **10.24h**| **4160** |
61
+
62
+ ## Download and Usage
63
+
64
+ To use CSEMOTIONS with [🤗 Datasets](https://huggingface.co/docs/datasets):
65
+
66
+ ```python
67
+ from datasets import load_dataset
68
+
69
+ dataset = load_dataset("AIDC-AI/CSEMOTIONS")
70
+ ```
71
+
72
+ ## Acknowledgements
73
+
74
+ We would like to thank our professional voice actors and the recording studio staff for their contributions.
75
+
76
+
77
+ ## License
78
+
79
+ The project is licensed under the Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0, SPDX-License-identifier: Apache-2.0).
80
+
81
+ ## Disclaimer
82
+
83
+ We used compliance checking algorithms during the training process, to ensure the compliance of the trained model and dataset to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the dataset is completely free of copyright issues or improper content. If you believe anything infringes on your rights or contains improper content, please contact us, and we will promptly address the matter.
84
+
85
  ---