--- license: cc-by-4.0 --- # Dataset Description This repository contains a dataset stored in **Parquet** format and partitioned by application tasks. The dataset is organized under the `parquet_ds/` directory, where each partition corresponds to a specific application task ID: ``` parquet_ds/ ├── tasks=4/ ├── tasks=5/ ├── tasks=6/ ├── tasks=7/ ├── tasks=9/ ├── tasks=10/ ├── tasks=11/ ├── tasks=13/ ├── tasks=14/ ├── tasks=15/ └── tasks=16/ ``` ## Task IDs and Applications Each task ID represents one application type: - **4**: Data Serving - **5**: Redis - **6**: Web Search - **7**: Graph Analytics - **9**: Data Analytics - **10**: MLPerf - **11**: HBase - **13**: Alluxio - **14**: Minio - **15**: TPC-C - **16**: Flink ## Loading the Dataset You can easily load the dataset with [PyArrow](https://arrow.apache.org/docs/python/): ```python import pyarrow.dataset as ds dataset = ds.dataset("parquet_ds", format="parquet", partitioning="hive") print(dataset.schema) ``` ## Schema Each task ID represents one application type: - **perf_ori (double)**: Normalized performance level between 0 and 1. - **workload (double)**: Numerical identifier assigned to workload level. - **tr_self**: VM metrics for the target application. - **lin_self**: Linux Perf metrics for the target application. - **td_self**: Top-Down analysis for the target application. - **tr_oth**: VM metrics for co-located neighbor VMs. - **lin_oth**: Linux Perf metrics for neighbor VMs. - **td_oth**: Top-Down analysis for neighbor VMs. - **tasks (int32)**: Application task ID (partition key). ## Schema Total coverage: 317 days of traces. ## Citation If you use this dataset in your research, please cite it as: ``` @misc{cloudformer2025, title = {CloudFormer: An Attention-based Performance Prediction for Public Clouds with Unknown Workload}, author = {Shahbazinia, Amirhossein and Huang, Darong and Costero, Luis and Atienza, David}, howpublished = {arXiv preprint arXiv:2509.03394}, year = {2025}, url = {https://arxiv.org/abs/2509.03394} } ```