Datasets:
Tasks:
Feature Extraction
Modalities:
Image
Formats:
imagefolder
Size:
10K - 100K
Tags:
climate
License:
File size: 1,570 Bytes
41f0921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import os
import shutil
import random
# Define paths
train_dir = "train"
val_dir = "val"
test_dir = "test"
# Define split ratios
train_ratio = 0.8
val_ratio = 0.1
test_ratio = 0.1
# Ensure output directories exist
for split_dir in [train_dir, val_dir, test_dir]:
os.makedirs(split_dir, exist_ok=True)
# Get class names (subdirectories current dir)
class_names = [d for d in os.listdir() if os.path.isdir(d) and d not in {"train", "val", "test"}]
# Process each class
for class_name in class_names:
class_path = class_name
images = [f for f in os.listdir(class_path) if os.path.isfile(os.path.join(class_path, f))]
# Shuffle images randomly
random.shuffle(images)
# Compute split indices
total_images = len(images)
train_count = int(total_images * train_ratio)
val_count = int(total_images * val_ratio)
# Split images
train_images = images[:train_count]
val_images = images[train_count:train_count + val_count]
test_images = images[train_count + val_count:]
# Define destination directories for the class
for split_name, split_images in zip(["train", "val", "test"], [train_images, val_images, test_images]):
split_class_dir = os.path.join(split_name, class_name)
os.makedirs(split_class_dir, exist_ok=True)
# Move images
for image in split_images:
src = os.path.join(class_path, image)
dst = os.path.join(split_class_dir, image)
shutil.move(src, dst)
print("Dataset successfully split into train, val, and test sets.")
|