import os import shutil import random # Define paths train_dir = "train" val_dir = "val" test_dir = "test" # Define split ratios train_ratio = 0.8 val_ratio = 0.1 test_ratio = 0.1 # Ensure output directories exist for split_dir in [train_dir, val_dir, test_dir]: os.makedirs(split_dir, exist_ok=True) # Get class names (subdirectories current dir) class_names = [d for d in os.listdir() if os.path.isdir(d) and d not in {"train", "val", "test"}] # Process each class for class_name in class_names: class_path = class_name images = [f for f in os.listdir(class_path) if os.path.isfile(os.path.join(class_path, f))] # Shuffle images randomly random.shuffle(images) # Compute split indices total_images = len(images) train_count = int(total_images * train_ratio) val_count = int(total_images * val_ratio) # Split images train_images = images[:train_count] val_images = images[train_count:train_count + val_count] test_images = images[train_count + val_count:] # Define destination directories for the class for split_name, split_images in zip(["train", "val", "test"], [train_images, val_images, test_images]): split_class_dir = os.path.join(split_name, class_name) os.makedirs(split_class_dir, exist_ok=True) # Move images for image in split_images: src = os.path.join(class_path, image) dst = os.path.join(split_class_dir, image) shutil.move(src, dst) print("Dataset successfully split into train, val, and test sets.")