Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
explanation-generation
License:
"""Mathematics Aptitude Test of Heuristics (MATH) dataset, lighteval format with correct builder configs.""" | |
import json | |
import os | |
from datasets import load_dataset, Dataset, DatasetDict, GeneratorBasedBuilder, BuilderConfig, DatasetInfo, Value, Features, Split, SplitGenerator, Version | |
_CITATION = """\ | |
@article{hendrycksmath2021, | |
title={Measuring Mathematical Problem Solving With the MATH Dataset}, | |
author={Dan Hendrycks | |
and Collin Burns | |
and Saurav Kadavath | |
and Akul Arora | |
and Steven Basart | |
and Eric Tang | |
and Dawn Song | |
and Jacob Steinhardt}, | |
journal={arXiv preprint arXiv:2103.03874}, | |
year={2021} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The Mathematics Aptitude Test of Heuristics (MATH) dataset consists of problems | |
from mathematics competitions, including the AMC 10, AMC 12, AIME, and more. | |
Each problem in MATH has a full step-by-step solution, which can be used to teach | |
models to generate answer derivations and explanations. This version of the dataset | |
includes appropriate builder configs s.t. it can be used as a drop-in replacement | |
for the now missing lighteval/MATH dataset. | |
""" | |
_HOMEPAGE = "https://github.com/hendrycks/math" | |
_LICENSE = "https://github.com/hendrycks/math/blob/main/LICENSE" | |
# Original data URL: "https://people.eecs.berkeley.edu/~hendrycks/MATH.tar" | |
_URL = "data/MATH.zip" | |
class FilteredTypeConfig(BuilderConfig): | |
def __init__(self, type_value, type_name, **kwargs): | |
super().__init__(**kwargs) | |
self.type_value = type_value | |
self.type_name = type_name | |
class FilteredTypeDatasetBuilder(GeneratorBasedBuilder): | |
"""Mathematics Aptitude Test of Heuristics (MATH) dataset.""" | |
VERSION = Version("1.0.0") | |
BUILDER_CONFIGS = [FilteredTypeConfig( | |
name="default", | |
version="1.0.0", | |
description=f"default builder config", | |
type_name="default", # for builder config | |
type_value="default", # in original dataset | |
)] + [ | |
FilteredTypeConfig( | |
name=type_name, | |
version="1.0.0", | |
description=f"Dataset filtered by type: {type_value}", | |
type_name=type_name, # for builder config | |
type_value=type_value, # in original dataset | |
) | |
for type_name, type_value in [("algebra", "Algebra"), ("counting_and_probability", "Counting & Probability"), ("geometry", "Geometry"), ("intermediate_algebra", "Intermediate Algebra"), ("number_theory", "Number Theory"), ("prealgebra", "Prealgebra"), ("precalculus", "Precalculus")] | |
] | |
def _info(self): | |
return DatasetInfo( | |
description=_DESCRIPTION, | |
features=Features({ | |
"problem": Value("string"), | |
"level": Value("string"), | |
"solution": Value("string"), | |
"type": Value("string"), | |
}), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
download_dir = dl_manager.download_and_extract(_URL) | |
return [ | |
SplitGenerator( | |
name=Split.TRAIN, | |
gen_kwargs={"data_dir": dl_manager.iter_files(os.path.join(download_dir, "MATH", "train"))}, | |
), | |
SplitGenerator( | |
name=Split.TEST, | |
gen_kwargs={"data_dir": dl_manager.iter_files(os.path.join(download_dir, "MATH", "test"))}, | |
), | |
] | |
def _generate_examples(self, data_dir): | |
type_value = self.config.type_value # Access the type value for the current config | |
"""Yields examples as (key, example) tuples. Filters by type if appropriate builder config is given.""" | |
for id_, filepath in enumerate(data_dir): | |
with open(filepath, "rb") as fin: | |
example = json.load(fin) | |
if type_value == "default" or example["type"] == type_value: | |
yield id_, example | |