Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
MATH-lighteval / MATH-lighteval.py
LenDigLearn's picture
Upload MATH-lighteval.py
24564c0 verified
raw
history blame
4.04 kB
"""Mathematics Aptitude Test of Heuristics (MATH) dataset, lighteval format with correct builder configs."""
import json
import os
from datasets import load_dataset, Dataset, DatasetDict, GeneratorBasedBuilder, BuilderConfig, DatasetInfo, Value, Features, Split, SplitGenerator, Version
_CITATION = """\
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks
and Collin Burns
and Saurav Kadavath
and Akul Arora
and Steven Basart
and Eric Tang
and Dawn Song
and Jacob Steinhardt},
journal={arXiv preprint arXiv:2103.03874},
year={2021}
}
"""
_DESCRIPTION = """\
The Mathematics Aptitude Test of Heuristics (MATH) dataset consists of problems
from mathematics competitions, including the AMC 10, AMC 12, AIME, and more.
Each problem in MATH has a full step-by-step solution, which can be used to teach
models to generate answer derivations and explanations. This version of the dataset
includes appropriate builder configs s.t. it can be used as a drop-in replacement
for the now missing lighteval/MATH dataset.
"""
_HOMEPAGE = "https://github.com/hendrycks/math"
_LICENSE = "https://github.com/hendrycks/math/blob/main/LICENSE"
# Original data URL: "https://people.eecs.berkeley.edu/~hendrycks/MATH.tar"
_URL = "data/MATH.zip"
class FilteredTypeConfig(BuilderConfig):
def __init__(self, type_value, type_name, **kwargs):
super().__init__(**kwargs)
self.type_value = type_value
self.type_name = type_name
class FilteredTypeDatasetBuilder(GeneratorBasedBuilder):
"""Mathematics Aptitude Test of Heuristics (MATH) dataset."""
VERSION = Version("1.0.0")
BUILDER_CONFIGS = [FilteredTypeConfig(
name="default",
version="1.0.0",
description=f"default builder config",
type_name="default", # for builder config
type_value="default", # in original dataset
)] + [
FilteredTypeConfig(
name=type_name,
version="1.0.0",
description=f"Dataset filtered by type: {type_value}",
type_name=type_name, # for builder config
type_value=type_value, # in original dataset
)
for type_name, type_value in [("algebra", "Algebra"), ("counting_and_probability", "Counting & Probability"), ("geometry", "Geometry"), ("intermediate_algebra", "Intermediate Algebra"), ("number_theory", "Number Theory"), ("prealgebra", "Prealgebra"), ("precalculus", "Precalculus")]
]
def _info(self):
return DatasetInfo(
description=_DESCRIPTION,
features=Features({
"problem": Value("string"),
"level": Value("string"),
"solution": Value("string"),
"type": Value("string"),
}),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
download_dir = dl_manager.download_and_extract(_URL)
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={"data_dir": dl_manager.iter_files(os.path.join(download_dir, "MATH", "train"))},
),
SplitGenerator(
name=Split.TEST,
gen_kwargs={"data_dir": dl_manager.iter_files(os.path.join(download_dir, "MATH", "test"))},
),
]
def _generate_examples(self, data_dir):
type_value = self.config.type_value # Access the type value for the current config
"""Yields examples as (key, example) tuples. Filters by type if appropriate builder config is given."""
for id_, filepath in enumerate(data_dir):
with open(filepath, "rb") as fin:
example = json.load(fin)
if type_value == "default" or example["type"] == type_value:
yield id_, example