mhagiwara commited on
Commit
b4e7870
·
verified ·
1 Parent(s): 593b995

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -70
README.md CHANGED
@@ -25,18 +25,56 @@ configs:
25
  **Version:** 0.1.0
26
  **Created on:** 2025-04-12
27
  **Creators:**
28
- - EarthSpeciesProject (https://www.earthspecies.org)
29
 
30
  ## Overview
31
 
32
- BEANS-Zero is a **benchmark bioacoustic dataset** designed for zero-shot bioacoustic evaluation tasks. Introduced in the paper [NATURELM-AUDIO: AN AUDIO-LANGUAGE FOUNDATION MODEL FOR BIOACOUSTICS](https://arxiv.org/pdf/2411.07186), this dataset aggregates multiple subsets from both established component datasets and newly curated ones. It is a benchmark dataset only to be used to evaluate audio-text multimodal models that accept a bioacoustic audio input (query audio) and a text prompt (e.g. 'What species is in this audio?') and generate text as output (e.g. "Taeniopygia guttata").
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Usage
35
  ```python
36
  import numpy as np
37
  from datasets import load_dataset
38
 
39
- ds = load_dataset("EarthSpeciesProject/BEANS-Zero", split="test") # set streaming=True if you want to stream
40
 
41
  # see the contents at a glance
42
  print(ds)
@@ -59,6 +97,7 @@ idx = np.where(np.array(ds["dataset_name"]) == "esc50")[0]
59
  esc50 = ds.select(idx)
60
  print(esc50)
61
  ```
 
62
  ```python
63
  # To stream the dataset instead of downloading it, first
64
  ds = load_dataset("EarthSpeciesProject/BEANS-Zero", split="test", streaming=True)
@@ -68,64 +107,17 @@ for i, sample in enumerate(ds):
68
  break
69
  print(sample.keys())
70
  ```
71
- ## Dataset Composition
72
-
73
- BEANS-Zero combines data from several well-known sources. There are total of 91965 samples (examples). It consists of two main groups:
74
-
75
- ### Already Part of the BEANS Benchmark
76
- - **esc-50:** A labeled collection of 2000 environmental audio recordings (5 seconds each) spanning 50 classes. ([CC-BY-NC](http://dx.doi.org/10.1145/2733373.2806390))
77
- - **Watkins:** Marine mammal sound recordings. (free for personal/academic uses)
78
- - **CBI:** Cornell Birdcall Identification dataset. ([CC-BY-NC-SA](https://www.kaggle.com/competitions/birdsong-recognition/overview))
79
- - **HumBugDB:** A large-scale, multi-species dataset of mosquito sounds. ([CC-BY](https://openreview.net/forum?id=vhjsBtq9OxO))
80
- - **Enabirds:** Bird dawn chorus detection data. ([CC0](https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecy.3329))
81
- - **HICEAS:** Marine mammal vocalizations from the Hawaiian Islands.
82
- - **RFCX:** Recordings for bird and frog vocalizations in soundscape recordings (academic/research & non-commercial use).
83
- - **Hainan Gibbons:** Automated detection of Hainan gibbon calls. ([CC-BY-NC-SA](https://doi.org/10.1002/rse2.201))
84
-
85
- ### Newly Added Subsets
86
- - **Lifestage:** Annotations for classifying animal lifestages (adult, juvenile, nestling).
87
- - **Call-type:** Labels distinguishing between call and song in animal sounds.
88
- - **Unseen-species-cmn / sci / tax:** Tasks for classifying species common names, scientific names, and taxonomic names not seen during training.
89
- - **Unseen-genus-cmn / sci / tax:** Tasks for classifying genus-level names (common, scientific, taxonomic) of unseen species.
90
- - **Unseen-family-cmn / sci / tax:** Tasks for classifying family-level names (common, scientific, taxonomic) of unseen species.
91
- - **Captioning:** English captions for bioacoustic recordings.
92
- - **ZF-Indiv:** A zebra finch dataset with individual and call-type annotations, from [Elie et al 2020 (https://doi.org/10.6084/m9.figshare.11905533.v1)]
93
-
94
- Each subset has its own metadata and licensing details. Each sample
95
-
96
- ## Sources
97
-
98
- BEANS-Zero was assembled using data from:
99
- - **Xeno-canto**
100
- - **iNaturalist**
101
- - **Animal Sound Archive**
102
- - **Elie et al 2020**
103
- - **ESC-50**
104
- - **RFCX**
105
- - **CBI**
106
- - **HumBugDB**
107
- - **Enabirds**
108
- - **HICEAS**
109
- - **Watkins**
110
- - **Hainan Gibbons**
111
-
112
- ## Tasks and Applications
113
-
114
- BEANS-Zero supports various research tasks:
115
- - **Audio Classification:** Identify and categorize animal sounds.
116
- - **Audio Detection:** Detect specific sound events in recordings.
117
- - **Audio Captioning:** Generate natural language descriptions of bioacoustic recordings.
118
-
119
- These tasks are particularly useful for exploring zero-shot learning applications in bioacoustics.
120
 
121
  ## Data Fields
 
122
  The following fields are present in each example:
 
123
  - **source_dataset** (str): One of the source datasets mentioned above
124
  - **audio** (Sequence[float]): The audio data in float32 format. The audio is not decoded.
125
  - **id** (str): Sample uuid.
126
- - **created_at** (str): Sample creation datetime in utc
127
  - **metadata** (str): Each sample can have a different duration and a different sample rate. `sample_rate = json.loads(sample["metadata"])["sample_rate"]`
128
- - **file_name** (str): Sample file_name
129
  - **instruction** (str): A prompt (a query) corresponding to the audio for your audio-text model with a placeholder for audio tokens. E.g. '<Audio><AudioHere></Audio> What is the scientific name for the focal species in the audio?'
130
  - **instruction_text** (str): Same as **instruction** but without the placeholder for audio tokens.
131
  - **output** (str): The expected output from the model
@@ -135,31 +127,27 @@ The following fields are present in each example:
135
 
136
  ## Licensing
137
 
138
- Due to its composite nature, BEANS-Zero is subject to multiple licenses. Individual samples have the "license" field
139
- indicating the specific license for that sample. The dataset is not intended for commercial use, and users should adhere to the licenses of the individual datasets.
140
 
141
  ## Citation
142
 
143
  If you use BEANS-Zero, please cite the following:
144
 
145
  ```bibtex
146
- @misc{naturelm-audio,
147
- title={NATURELM-AUDIO: AN AUDIO-LANGUAGE FOUNDATION MODEL FOR BIOACOUSTICS},
148
- url={https://arxiv.org/pdf/2411.07186},
149
- note={Preprint},
150
- year={2024}
 
151
  }
152
  ```
153
 
154
- ## How to Use
155
-
156
- BEANS-Zero is provided with a default configuration. Data files are belong to a sing
157
-
158
  ## Contact
159
 
160
  For questions, comments, or contributions, please contact:
161
- - M. Hagiwara (masato at earthspecies dot org)
162
- - D. Robinson (david at earthspecies dot org)
163
- - M. Miron (marius at earthspecies dot org)
164
- - G. Narula (gagan at earthspecies dot org)
165
- - M. Alizadeh (milad at earthspecies dot org)
 
25
  **Version:** 0.1.0
26
  **Created on:** 2025-04-12
27
  **Creators:**
28
+ - Earth Species Project (https://www.earthspecies.org)
29
 
30
  ## Overview
31
 
32
+ BEANS-Zero is a **bioacoustics** benchmark designed to evaluate multimodal audio-language models in zero-shot settings. Introduced in the paper NatureLM-audio paper ([Robinson et al., 2024](https://openreview.net/forum?id=hJVdwBpWjt)), it brings together tasks from both existing datasets and newly curated resources.
33
+
34
+ The benchmark focuses on models that take a bioacoustic audio input (e.g., bird or mammal vocalizations) and a text instruction (e.g., "What species is in this audio?"), and return a textual output (e.g., "Taeniopygia guttata"). As a zero-shot benchmark, BEANS-Zero contains only a test split—no training or in-context examples are provided.
35
+
36
+ Many tasks originate from the original [BEANS benchmark](https://arxiv.org/abs/2210.12300), but BEANS-Zero adds new datasets and task types that broaden the evaluation scope.
37
+
38
+ ## Tasks and Applications
39
+
40
+ BEANS-Zero supports a wide range of zero-shot evaluation tasks, including:
41
+ - **Audio Classification** — Identify species or sound categories from animal vocalizations.
42
+ - **Audio Detection** — Detect the presence of species in long-form recordings.
43
+ - **Audio Captioning** — Generate natural language descriptions of acoustic scenes.
44
+
45
+ ## Dataset Composition
46
+
47
+ BEANS-Zero combines data from several well-known sources. There are total of 91,965 samples (examples). It consists of two main groups:
48
+
49
+ ### Original BEANS Tasks
50
+
51
+ - `esc-50`: Generic environmental sound classification with 50 labels ([Piczak, 2015](https://dl.acm.org/doi/10.1145/2733373.2806390), License: CC-BY-NC)
52
+ - `watkins`: Marine mammal species classification with 31 species ([Sayigh et al., 2016](https://asa.scitation.org/doi/abs/10.1121/2.0000358), free for personal and academic use)
53
+ - `cbi`: Bird species classification with 264 labels from the CornellBird Identification competition hosted on Kaggle ([Howard et al., 2020](https://kaggle.com/competitions/birdsong-recognition), License: CC-BY-NC-SA)
54
+ - `humbugdb`: Mosquito wingbeat sound classification into 14 species ([Kiskin et al., 2021](https://arxiv.org/abs/2110.07607), License: CC-BY)
55
+ - `enabirds`: Bird dawn chorus detection with 34 species ([Chronister et al., 2021](https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecy.3329), License: CC0)
56
+ - `hiceas`: Minke whale detection from the Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS) ([NOAA, 2022](https://doi.org/10.25921/e12p-gj65), free without restriction)
57
+ - `rfcx`: Bird and frog detection from the Rainforest Connection(RFCx) data with 24 species ([LeBien et al., 2020]( https://www.sciencedirect.com/science/article/pii/S1574954120300637.), usage allowed for academic research)
58
+ - `gibbons`: Hainan gibbon detection with 3 call type labels ([Dufourq et al., 2021]((https://doi.org/10.1002/rse2.201)), License: CC-BY-NC-SA)
59
+
60
+ ### Newly Added Subsets
61
+
62
+ - `unseen-species-*`: Unseen species classification with 200 species held out from AnimalSpeak ([Robinson et al., 2024](https://doi.org/10.1109/ICASSP48485.2024.10447250)), with each sub-dataset using common (`cmn`), scientific (`sci`), or taxonomic (`tax`) names
63
+ - `unseen-genus-*`: Generalize to unseen genera (`cmn`/`sci`/`tax`)
64
+ - `unseen-family-*`: Generalize to unseen families (`cmn`/`sci`/`tax`)
65
+ - `lifestage`: Predicting the lifestage of birds across multiple species (e.g., adult, juvenile), curated from [xeno-canto](https://xeno-canto.org/)
66
+ - `call-type`: Classifying song vs. call across multiple bird species, curated from [xeno-canto](https://xeno-canto.org/)
67
+ - `captioning`: Captioning bioacoustic audio on AnimalSpeak ([Robinson et al., 2024](https://doi.org/10.1109/ICASSP48485.2024.10447250))
68
+ - `zf-indv`: Determining whether a recording contains multiplezebra finches, using programmatically generated mixtures (1–4 individuals) ([Elie and Theunissen, 2020](https://doi.org/10.6084/m9.figshare.11905533.v1))
69
+
70
+ Each sample is labeled with its source dataset and license.
71
 
72
  ## Usage
73
  ```python
74
  import numpy as np
75
  from datasets import load_dataset
76
 
77
+ ds = load_dataset("EarthSpeciesProject/BEANS-Zero", split="test")
78
 
79
  # see the contents at a glance
80
  print(ds)
 
97
  esc50 = ds.select(idx)
98
  print(esc50)
99
  ```
100
+
101
  ```python
102
  # To stream the dataset instead of downloading it, first
103
  ds = load_dataset("EarthSpeciesProject/BEANS-Zero", split="test", streaming=True)
 
107
  break
108
  print(sample.keys())
109
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
  ## Data Fields
112
+
113
  The following fields are present in each example:
114
+
115
  - **source_dataset** (str): One of the source datasets mentioned above
116
  - **audio** (Sequence[float]): The audio data in float32 format. The audio is not decoded.
117
  - **id** (str): Sample uuid.
118
+ - **created_at** (str): Sample creation datetime in UTC
119
  - **metadata** (str): Each sample can have a different duration and a different sample rate. `sample_rate = json.loads(sample["metadata"])["sample_rate"]`
120
+ - **file_name** (str): Audio file name
121
  - **instruction** (str): A prompt (a query) corresponding to the audio for your audio-text model with a placeholder for audio tokens. E.g. '<Audio><AudioHere></Audio> What is the scientific name for the focal species in the audio?'
122
  - **instruction_text** (str): Same as **instruction** but without the placeholder for audio tokens.
123
  - **output** (str): The expected output from the model
 
127
 
128
  ## Licensing
129
 
130
+ Due to its composite nature, BEANS-Zero is subject to multiple licenses. Individual samples have the "license" field indicating the specific license for that sample. The dataset is not intended for commercial use, and users should adhere to the licenses of the individual datasets.
 
131
 
132
  ## Citation
133
 
134
  If you use BEANS-Zero, please cite the following:
135
 
136
  ```bibtex
137
+ @inproceedings{robinson2025naturelm,
138
+ title = {NatureLM-audio: an Audio-Language Foundation Model for Bioacoustics},
139
+ author = {David Robinson and Marius Miron and Masato Hagiwara and Olivier Pietquin},
140
+ booktitle = {Proceedings of the International Conference on Learning Representations (ICLR)},
141
+ year = {2025},
142
+ url = {https://openreview.net/forum?id=hJVdwBpWjt}
143
  }
144
  ```
145
 
 
 
 
 
146
  ## Contact
147
 
148
  For questions, comments, or contributions, please contact:
149
+ - David Robinson (david at earthspecies dot org)
150
+ - Marius Miron (marius at earthspecies dot org)
151
+ - Masato Hagiwara (masato at earthspecies dot org)
152
+ - Gagan Narula (gagan at earthspecies dot org)
153
+ - Milad Alizadeh (milad at earthspecies dot org)