File size: 5,761 Bytes
cbe99f7
46701d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c12731
 
402b740
46701d1
7fd5ca4
 
 
 
 
 
 
 
 
 
 
 
a534399
7fd5ca4
 
 
 
51fe055
7fd5ca4
 
 
51fe055
 
 
 
 
7fd5ca4
 
51fe055
 
7fd5ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a534399
 
 
7fd5ca4
 
a534399
 
 
 
 
 
 
 
7fd5ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1905d
7fd5ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a1905d
7fd5ca4
 
 
 
 
2a1905d
7fd5ca4
 
2a1905d
7fd5ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
pretty_name: czech-synth-text-2025
size_categories:
- 100K<n<1M
dataset_info:
  features:
  - name: image
    dtype: image
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 2156337658.4
    num_examples: 454820
  download_size: 2117123960
  dataset_size: 2156337658.4
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
language:
- cs
license: mit
---
# Czech Synthetic Text Recognition Dataset

A large-scale synthetic dataset for Czech text recognition, containing 454,820 text images with corresponding transcriptions. Created using [SynthTiger](https://github.com/clovaai/synthtiger).

## Dataset Description

This dataset consists of synthetically generated images of Czech text, designed for training optical character recognition (OCR) models. Each image contains a single word or short phrase rendered with various visual effects to simulate real-world text appearance.

### Dataset Statistics
- **Total samples**: 454,820 image-text pairs
- **Language**: Czech (cs_CZ)
- **Image format**: JPEG
- **Storage format**: Parquet files (5 shards in data/ folder)
- **Total size**: ~1.96 GB

## Dataset Structure

The dataset is stored in HuggingFace's optimized format with automatic image display support:

```
data/
├── train-00000-of-00005-*.parquet
├── train-00001-of-00005-*.parquet
├── train-00002-of-00005-*.parquet
├── train-00003-of-00005-*.parquet
└── train-00004-of-00005-*.parquet
```

Each Parquet file contains two columns:
- `image`: PIL Image object (JPEG format, automatically displayed in dataset viewer)
- `text`: Ground truth text transcription

## Usage

### Loading with Hugging Face Datasets

```python
from datasets import load_dataset

# Load the entire dataset
dataset = load_dataset("Empatixx/synth-text-recognition-cs")

# Access samples
sample = dataset['train'][0]
image = sample['image']  # PIL Image object
text = sample['text']    # Text transcription

# Load specific splits or streaming
dataset = load_dataset("Empatixx/synth-text-recognition-cs", split="train[:1000]")  # First 1000 samples
dataset = load_dataset("Empatixx/synth-text-recognition-cs", streaming=True)  # Stream the dataset
```

### Direct Loading from Repository

The dataset now has proper Image type support, so images will display automatically in the HuggingFace dataset viewer!

```python
# Images are automatically loaded as PIL Image objects
sample = dataset['train'][0]
image = sample['image']  # Already a PIL Image, not bytes!
image.show()  # Display the image

# Get the text transcription
text = sample['text']
print(f"Text: {text}")
```

### PyTorch DataLoader Example

```python
from datasets import load_dataset
from torch.utils.data import DataLoader
from torchvision import transforms

# Load dataset
dataset = load_dataset("Empatixx/synth-text-recognition-cs")

# Define transforms
transform = transforms.Compose([
    transforms.Resize((32, 128)),
    transforms.ToTensor(),
])

# Create DataLoader
def collate_fn(batch):
    images = [transform(sample['image']) for sample in batch]
    texts = [sample['text'] for sample in batch]
    return torch.stack(images), texts

dataloader = DataLoader(
    dataset['train'],
    batch_size=32,
    shuffle=True,
    collate_fn=collate_fn
)
```

## Generation Details

The dataset was generated using SynthTiger with the following characteristics:

### Text Sources
- Czech words from [czech-cc0-dictionaries](https://gitlab.com/czech-cc0-dictionaries/czech-cc0-dictionaries) (CC0 licensed)
- Text lengths: 1-25 characters
- Character set: Czech alphabet including diacritics (ěščřžýáíéůú)

### Visual Variations
- **Fonts**: Arimo-Regular, OpenSans-Regular, Roboto-Regular, Tinos-Regular (sizes 40-80px)
- **Colors**: Diverse color schemes from predefined colormaps
- **Effects**: Borders, shadows, and 3D extrusion effects
- **Transformations**: Perspective, rotation, shearing, and elastic distortions
- **Backgrounds**: Textured backgrounds with varying complexity
- **Quality**: JPEG compression with quality 50-95

### Text Rendering Styles
- Horizontal text layout
- Both curved and straight text
- Various text effects including:
  - Border effects (25% probability)
  - Shadow effects (50% probability)  
  - Extrusion effects (10% probability)

## Dataset Creation

The dataset was created using the following process:

1. **Text Generation**: Czech words selected from corpus files
2. **Visual Rendering**: Text rendered with random fonts, colors, and effects
3. **Background Generation**: Synthetic backgrounds with textures and patterns
4. **Post-processing**: Geometric transformations, noise, and compression
5. **Format Conversion**: Original files converted to Parquet format for efficiency


## Citation

If you use this dataset, please cite:

```bibtex
@misc{czech-synth-text-2025,
  title={Czech Synthetic Text Recognition Dataset},
  author={Empatixx},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/Empatixx/synth-text-recognition-cs}
}
```

Also cite the SynthTiger paper:

```bibtex
@inproceedings{yoo2021synthtiger,
  title={SynthTiger: Synthetic Text Image Generator Towards Better Text Recognition Models},
  author={Yoo, Moonbin and Shin, Yoonsik and Paek, Seunghyun},
  booktitle={ICDAR},
  year={2021}
}
```

## License

This dataset is released under the same license as SynthTiger. Please refer to the original [SynthTiger repository](https://github.com/clovaai/synthtiger) for license details.

## Acknowledgments

- Dataset generated using [SynthTiger](https://github.com/clovaai/synthtiger)
- Czech word corpus from [czech-cc0-dictionaries](https://gitlab.com/czech-cc0-dictionaries/czech-cc0-dictionaries) (CC0 license)