|  | import os | 
					
						
						|  | import json | 
					
						
						|  | import shutil | 
					
						
						|  | import tifffile | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | S2_MEAN = [1370.19151926, 1184.3824625, 1120.77120066, 1136.26026392, 1263.73947144, 1645.40315151, 1846.87040806, 1762.59530783, 1972.62420416,  582.72633433, 14.77112979, 1732.16362238, 1247.91870117] | 
					
						
						|  |  | 
					
						
						|  | S2_STD = [633.15169573, 650.2842772, 712.12507725, 965.23119807, 948.9819932, 1108.06650639, 1258.36394548, 1233.1492281, 1364.38688993, 472.37967789, 14.3114637, 1310.36996126, 1087.6020813] | 
					
						
						|  |  | 
					
						
						|  | S1_MEAN = [-12.54847273, -20.19237134] | 
					
						
						|  |  | 
					
						
						|  | S1_STD = [5.25697717, 5.91150917] | 
					
						
						|  |  | 
					
						
						|  | class DFC2020Dataset(datasets.GeneratorBasedBuilder): | 
					
						
						|  | VERSION = datasets.Version("1.0.0") | 
					
						
						|  |  | 
					
						
						|  | DATA_URL = "https://huggingface.co/datasets/GFM-Bench/DFC2020/resolve/main/data/DFC2020.zip" | 
					
						
						|  |  | 
					
						
						|  | metadata = { | 
					
						
						|  | "s2c": { | 
					
						
						|  | "bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"], | 
					
						
						|  | "channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4], | 
					
						
						|  | "mean": S2_MEAN, | 
					
						
						|  | "std": S2_STD, | 
					
						
						|  | }, | 
					
						
						|  | "s1": { | 
					
						
						|  | "bands": ["VV", "VH"], | 
					
						
						|  | "channel_wv": [5500, 5700], | 
					
						
						|  | "mean": S1_MEAN, | 
					
						
						|  | "std": S1_STD | 
					
						
						|  | } | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | SIZE = HEIGHT = WIDTH = 96 | 
					
						
						|  |  | 
					
						
						|  | spatial_resolution = 10 | 
					
						
						|  |  | 
					
						
						|  | DFC2020_CLASSES = [ | 
					
						
						|  | 255, | 
					
						
						|  | 0, 0, 0, 0, 0, | 
					
						
						|  | 1, 1, | 
					
						
						|  | 255, | 
					
						
						|  | 255, | 
					
						
						|  | 2, | 
					
						
						|  | 3, | 
					
						
						|  | 4, | 
					
						
						|  | 5, | 
					
						
						|  | 4, | 
					
						
						|  | 255, | 
					
						
						|  | 6, | 
					
						
						|  | 7 | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | NUM_CLASSES = 8 | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | metadata = self.metadata | 
					
						
						|  | metadata['size'] = self.SIZE | 
					
						
						|  | metadata['num_classes'] = self.NUM_CLASSES | 
					
						
						|  | metadata['spatial_resolution'] = self.spatial_resolution | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=json.dumps(metadata), | 
					
						
						|  | features=datasets.Features({ | 
					
						
						|  | "optical": datasets.Array3D(shape=(13, self.HEIGHT, self.WIDTH), dtype="float32"), | 
					
						
						|  | "radar": datasets.Array3D(shape=(2, self.HEIGHT, self.WIDTH), dtype="float32"), | 
					
						
						|  | "label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), | 
					
						
						|  | "optical_channel_wv": datasets.Sequence(datasets.Value("float32")), | 
					
						
						|  | "radar_channel_wv": datasets.Sequence(datasets.Value("float32")), | 
					
						
						|  | "spatial_resolution": datasets.Value("int32"), | 
					
						
						|  | }), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | if isinstance(self.DATA_URL, list): | 
					
						
						|  | downloaded_files = dl_manager.download(self.DATA_URL) | 
					
						
						|  | combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") | 
					
						
						|  | with open(combined_file, 'wb') as outfile: | 
					
						
						|  | for part_file in downloaded_files: | 
					
						
						|  | with open(part_file, 'rb') as infile: | 
					
						
						|  | shutil.copyfileobj(infile, outfile) | 
					
						
						|  | data_dir = dl_manager.extract(combined_file) | 
					
						
						|  | os.remove(combined_file) | 
					
						
						|  | else: | 
					
						
						|  | data_dir = dl_manager.download_and_extract(self.DATA_URL) | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name="train", | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "split": 'train', | 
					
						
						|  | "data_dir": data_dir, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name="val", | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "split": 'val', | 
					
						
						|  | "data_dir": data_dir, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name="test", | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "split": 'test', | 
					
						
						|  | "data_dir": data_dir, | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, split, data_dir): | 
					
						
						|  | optical_channel_wv = self.metadata["s2c"]["channel_wv"] | 
					
						
						|  | radar_channel_wv = self.metadata["s1"]["channel_wv"] | 
					
						
						|  | spatial_resolution = self.spatial_resolution | 
					
						
						|  |  | 
					
						
						|  | data_dir = os.path.join(data_dir, "DFC2020") | 
					
						
						|  | metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) | 
					
						
						|  | metadata = metadata[metadata["split"] == split].reset_index(drop=True) | 
					
						
						|  |  | 
					
						
						|  | for index, row in metadata.iterrows(): | 
					
						
						|  | optical_path = os.path.join(data_dir, row.optical_path) | 
					
						
						|  | optical = self._read_image(optical_path).astype(np.float32) | 
					
						
						|  |  | 
					
						
						|  | radar_path = os.path.join(data_dir, row.radar_path) | 
					
						
						|  | radar = self._read_image(radar_path).astype(np.float32) | 
					
						
						|  |  | 
					
						
						|  | label_path = os.path.join(data_dir, row.label_path) | 
					
						
						|  | label = self._read_image(label_path)[0, :, :] | 
					
						
						|  | label = np.take(self.DFC2020_CLASSES, label.astype(np.int64)) | 
					
						
						|  | label = label.astype(np.int32) | 
					
						
						|  |  | 
					
						
						|  | sample = { | 
					
						
						|  | "optical": optical, | 
					
						
						|  | "radar": radar, | 
					
						
						|  | "optical_channel_wv": optical_channel_wv, | 
					
						
						|  | "radar_channel_wv": radar_channel_wv, | 
					
						
						|  | "label": label, | 
					
						
						|  | "spatial_resolution": spatial_resolution, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | yield f"{index}", sample | 
					
						
						|  |  | 
					
						
						|  | def _read_image(self, image_path): | 
					
						
						|  | """Read tiff image from image_path | 
					
						
						|  | Args: | 
					
						
						|  | image_path: | 
					
						
						|  | Image path to read from | 
					
						
						|  |  | 
					
						
						|  | Return: | 
					
						
						|  | image: | 
					
						
						|  | C, H, W numpy array image | 
					
						
						|  | """ | 
					
						
						|  | image = tifffile.imread(image_path) | 
					
						
						|  | image = np.transpose(image, (2, 0, 1)) | 
					
						
						|  |  | 
					
						
						|  | return image |