Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
task_categories:
|
3 |
+
- image-segmentation
|
4 |
+
---
|
5 |
+
# SegMunich
|
6 |
+
**SegMunich** is a segmentation task dataset that is Sentinel-2 satellite based. It contains spectral imagery of Munich's urban landscape over a span of three years.
|
7 |
+
|
8 |
+
Please refer to the original paper for more detailed information about the original SegMunich dataset:
|
9 |
+
- Paper: https://arxiv.org/abs/2311.07113
|
10 |
+
|
11 |
+
## How to Use This Dataset
|
12 |
+
```python
|
13 |
+
from datasets import load_dataset
|
14 |
+
|
15 |
+
dataset = load_dataset("GFM-Bench/SegMunich")
|
16 |
+
```
|
17 |
+
|
18 |
+
Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗
|
19 |
+
|
20 |
+
## Dataset Metadata
|
21 |
+
|
22 |
+
The following metadata provides details about the Sentinel-2 imagery used in the dataset:
|
23 |
+
<!--- **Number of Sentinel-1 Bands**: 2-->
|
24 |
+
<!--- **Sentinel-1 Bands**: VV, VH-->
|
25 |
+
- **Number of Sentinel-2 Bands**: 10
|
26 |
+
- **Sentinel-2 Bands**: B01 (**Coastal aerosol**), B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B8A (**Narrow NIR**), B11 (**SWIR**), B12 (**SWIR**)
|
27 |
+
- **Image Resolution**: 128 x 128 pixels
|
28 |
+
- **Spatial Resolution**: 10 meters
|
29 |
+
- **Number of Classes**: 13
|
30 |
+
|
31 |
+
## Dataset Splits
|
32 |
+
The **SegMunich** dataset consists following splits:
|
33 |
+
- **train**: 3,000 samples
|
34 |
+
- **val**: 403 samples
|
35 |
+
- **test**: 403 samples
|
36 |
+
|
37 |
+
## Dataset Features:
|
38 |
+
The **SegMunich** dataset consists of following features:
|
39 |
+
<!--- **radar**: the Sentinel-1 image.-->
|
40 |
+
- **optical**: the Sentinel-2 image.
|
41 |
+
- **label**: the segmentation labels.
|
42 |
+
<!--- **radar_channel_wv**: the central wavelength of each Sentinel-1 bands.-->
|
43 |
+
- **optical_channel_wv**: the central wavelength of each Sentinel-2 bands.
|
44 |
+
- **spatial_resolution**: the spatial resolution of images.
|
45 |
+
## Citation
|
46 |
+
If you use the SegMunich dataset in your work, please cite the original paper:
|
47 |
+
```
|
48 |
+
@article{hong2024spectralgpt,
|
49 |
+
title={SpectralGPT: Spectral remote sensing foundation model},
|
50 |
+
author={Hong, Danfeng and Zhang, Bing and Li, Xuyang and Li, Yuxuan and Li, Chenyu and Yao, Jing and Yokoya, Naoto and Li, Hao and Ghamisi, Pedram and Jia, Xiuping and others},
|
51 |
+
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
|
52 |
+
year={2024},
|
53 |
+
publisher={IEEE}
|
54 |
+
}
|
55 |
+
```
|