import math | |
import json | |
with open('bucket_categorization.json', 'r') as fp: | |
bucket_data = json.load(fp) | |
print(len(bucket_data)) | |
base_batch_size = 16 | |
base_context_length = 1024 * 1024 | |
all_data = 0 | |
sampler_meta = [] | |
for bucket, indices in bucket_data.items(): | |
resolution = bucket.split('x') | |
height, width = int(resolution[0]), int(resolution[1]) | |
batch_size = round(base_batch_size*base_context_length/(height*width)) | |
batch_size = min(batch_size, 128) | |
num_batch = round(len(indices) / batch_size) | |
for i in range(num_batch): | |
current_indices = indices[i*batch_size: (i+1)*batch_size] | |
if len(current_indices) == batch_size: | |
all_data += batch_size | |
sampler_meta.append(current_indices) | |
print(all_data) | |
print(len(sampler_meta)) | |
with open('bucket_sampler.json', 'w') as fp: | |
json.dump(sampler_meta, fp, indent=4) | |