import math import json with open('bucket_categorization.json', 'r') as fp: bucket_data = json.load(fp) print(len(bucket_data)) base_batch_size = 16 base_context_length = 1024 * 1024 all_data = 0 sampler_meta = [] for bucket, indices in bucket_data.items(): resolution = bucket.split('x') height, width = int(resolution[0]), int(resolution[1]) batch_size = round(base_batch_size*base_context_length/(height*width)) batch_size = min(batch_size, 128) num_batch = round(len(indices) / batch_size) for i in range(num_batch): current_indices = indices[i*batch_size: (i+1)*batch_size] if len(current_indices) == batch_size: all_data += batch_size sampler_meta.append(current_indices) print(all_data) print(len(sampler_meta)) with open('bucket_sampler.json', 'w') as fp: json.dump(sampler_meta, fp, indent=4)