diffusers for Democratizing Diffusion Models

IISc, June 11 2023 Sayak Paul, Hugging Face 🤗 @RisingSayak

Presenting this work on behalf of the Diffusers team (past and current) and the dear community 🤗

Plan of attack

- (1) Generative models a brief intro
- (2) **\\$** diffusers for image generation and beyond
- (3) Making 🍾 diffusers research-friendly

Feel free to interrupt with questions anytime :)

Generative Models

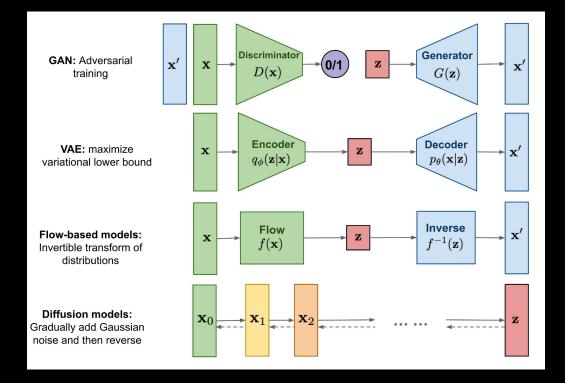


Image from "What are Diffusion Models" by Lilian Weng

Generative Models

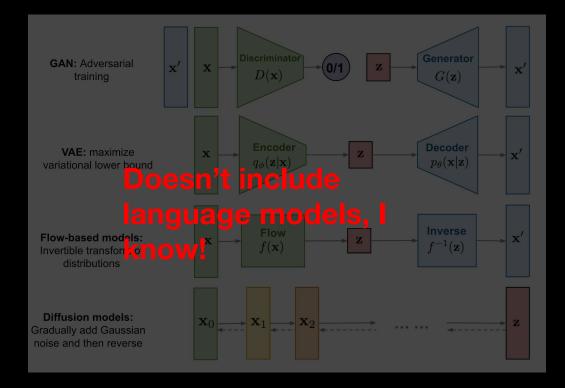


Image from "What are Diffusion Models" by Lilian Weng

Generative Models

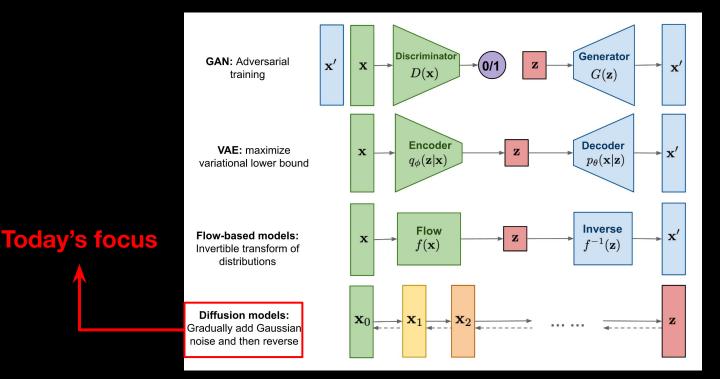
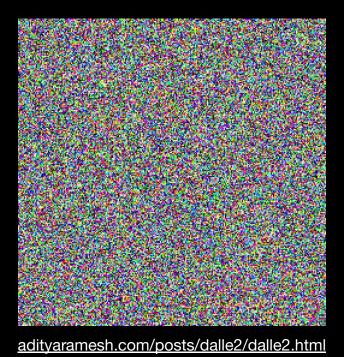


Image from "What are Diffusion Models" by Lilian Weng

For the next couple of slides, we will concentrate on "image" diffusion models

Diffusion models

What happens when you refine a noise vector to become a realistic image?



Diffusion models

What happens when you refine a noise vector to become a realistic image?

Data

Noise

https://nvlabs.github.io/denoising-diffusion-gan/

Diffusion models

When you "condition" the denoising process with text:

DALL-E 2 prompt: "A photo of a white fur monster standing in a purple room"

Diffusion models – the path

- Deep unsupervised learning using nonequilibrium thermodynamics (2015)
- Denoising Diffusion Probabilistic Models (2020)
- Denoising Diffusion Implicit Models (2020)
- Diffusion Models Beat GANs on Image Synthesis (2021)
- Classifier-Free Diffusion Guidance (2021)
- GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided
 Diffusion Models (2022)
- High-Resolution Image Synthesis with Latent Diffusion Models (2022)¹
- Elucidating the Design Space of Diffusion-Based Generative Models (2022)²
- Hierarchical Text-Conditional Image Generation with CLIP Latents (2022)³
- Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding (2022)⁴
- 1 Scaled to Stable Diffusion
- 2 The "Karras paper"
- 3 DALLE-2
- 4 Imagen

Some popular diffusion models for images

- DALL-E 2 (OpenAl)
- Stable Diffusion (Stability AI, CompVis, RunwayML, LAION)
- Imagen (Google)
- IF (DeepFloyd)
- Kandinsky (Al Forever)

But ...

Not all these models are open-source!

- Stable Diffusion -
- Stable unCLIP (Stability AI version) -
- unCLIP (Kakao Brain version) -
- IF (Imagen-like model from DeepFloyd and Stability AI) ✓
- Kandinsky 🗸
- DALL-E 2 🗙
- Imagen X

Why make them open?

- Study the risk factors and failure cases
- Evaluate safety measurements
- Build on top of them
- Improve them

huggingface / diffusers

😑 Diffusers: State-of-the-art diffusion models for image and audio generation in PuTorch

https://github.com/huggingface/diffusers

A Python library maintained at 🤗

- Providing open and responsible access to pre-trained diffusion models.
- Democratizing the ecosystem of diffusion models by making them easy to use.

Text-to-image with 🍾 diffusers

from diffusers import StableDiffusionPipeline

```
model_id = "runwayml/stable-diffusion-v1-5"
pipeline = StableDiffusionPipeline.from_pretrained(model_id)
pipeline = pipeline.to("cuda")
```

```
image = pipeline("An astronaut riding a tiger").images[0]
image.save("image.png")
```


https://hf.co/docs/diffusers/api/pipelines/stable_diffusion/overview

Striving for photorealism

```
from diffusers import DiffusionPipeline
import torch

# prior model
pipe_prior = DiffusionPipeline.from_pretrained(
        "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")
```

```
# text-to-image model
t2i_pipe = DiffusionPipeline.from_pretrained(
        "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
t2i_pipe.to("cuda")
```

```
prompt = "A car exploding into colorful dust"
image_embeds, negative_image_embeds = pipe_prior(prompt,
generator=generator).to_tuple()
image = t2i_pipe(
    prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds
).images[0]
image.save("image.png")
```


https://hf.co/docs/diffusers/main/en/api/pipelines/kandinsky

Image variations with Stable unCLIP and 🍾 diffusers

```
from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers.utils import load_image
import torch
```

```
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-unclip",
    torch_dtype=torch.float16,
    variation="fp16"
```

```
init_image = load_image(<image_url>)
images = pipe(init_image, num_images_per_prompt=3).images
```


https://hf.co/docs/diffusers/api/pipelines/stable unclip

Text-to-video with 🍾 diffusers

```
import torch
import imageio
from diffusers import TextToVideoZeroPipeline
```

```
pipe = TextToVideoZeroPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16
```

```
prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.gif", result, "GIF", fps=4)
```


https://hf.co/docs/diffusers/api/pipelines/text to video zero

Community's favorite: ControlNet 🌏

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

```
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
          "runwayml/stable-diffusion-v1-5", controlnet=controlnet
)
```

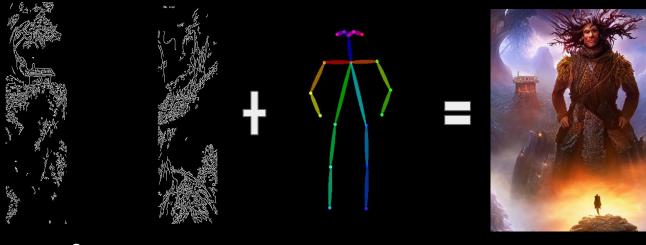
```
prompt = "Darth Vader dancing in a desert"
image = pipe(prompt, image=openpose_image).images[0]
```

Community's favorite: ControlNet 🌏

"Darth Vader dancing in a desert"

Community's favorite: ControlNet 🌏

"a giant standing in a fantasy landscape, best quality"



Canny map

Pose

Final image

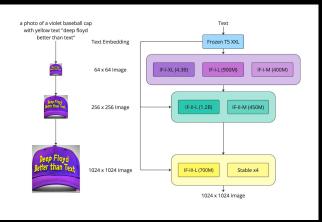
"Darth Vader dancing in a desert"

https://hf.co/docs/diffusers/main/en/api/pipelines/text to video zero

You also asked for models that can spell characters well :)

Fresh off the press - IF

Running a 43.2 GB system in a free-tier Colab Notebook (T4 GPU)



Taken from https://hf.co/DeepFloyd/IF-I-XL-v1.0

https://hf.co/blog/if

"Solution of the series of the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or want to train your own diffusion model, Solution of the pretrained with a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions." - <u>https://hf.co/docs/diffusers</u>

Various pipelines exploration:

- Image translation (think of CycleGAN like stuff)
- Text to video generation
- Latent space manipulation
- Image editing with human-readable instructions
- Semantic guidance
- and more (including AUDIO pipelines)!

https://hf.co/docs/diffusers/main/en/api/pipelines

Various pipelines exploration:

- Image translation (think of CycleGAN like stuff)
- Text to video generation
- Latent space manipulation
- Image editing with human-readable instructions
- Semantic guidance
- and more (including AUDIO pipelines)!

Swapping components of a pipeline for rapid experimentation:

import torch
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler

```
pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16
```

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) ______

prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images

https://hf.co/docs/diffusers/using-diffusers/schedulers

New

scheduler

Swapping components of a pipeline for rapid experimentation:

```
import torch
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
unet = UNet2DConditionModel.from_pretrained(
    "valhalla/sd-pokemon-model",
    subfolder="unet",
    torch_dtype=torch.float16
)
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    Inet=unet,
    torch_dtype=torch.float16
)
prompt = "cute Sundar Pichai character"
```

```
result = pipe(prompt=prompt).images
```

https://hf.co/docs/diffusers/using-diffusers/loading

"cute Sundar Pichai character"

Exploring 🍾 diffusers

Train your own models 🔥

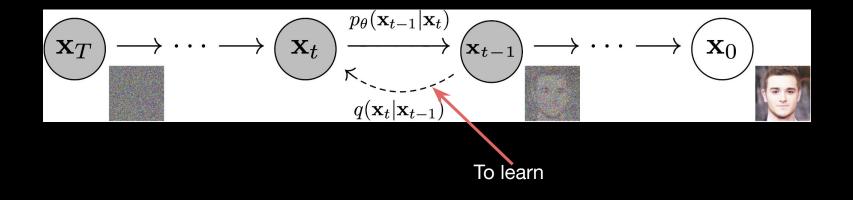
community
controlnet
custom_diffusion
dreambooth
inference
instruct_pix2pix
research_projects
rl
text_to_image
textual_inversion
unconditional_image_generation

https://github.com/huggingface/diffusers/tree/main/examples/

Training for unconditional generation:

Sample dataset

Training for unconditional generation:

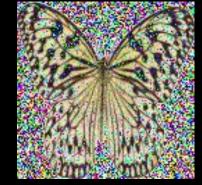


We add noise to an image according to a <u>noise schedule</u>:

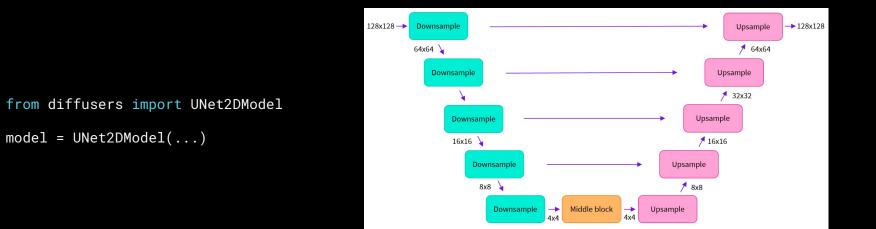
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)

```
noise = torch.randn(sample_image.shape)
timesteps = torch.LongTensor([50])
```

noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps) noisy_image = ((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5) Image.fromarray(noisy_image.type(torch.uint8).numpy()[0])



We need a model (neural net) to predict the less noisy image:



A minimal training loop:

```
for epoch in range(epochs):
    for clean_image_batch in dataset:
        # Sample noise to add to the images.
        noise = torch.randn(clean_image_batch.shape).to(clean_image_batch)
        bs = clean_image_batch.shape[0]
        # Sample a random timestep for each image.
        timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))
        # Add noise to the clean images according to the noise magnitude at
        # each timestep (this is the forward diffusion process).
```

```
noisy_images = noise_scheduler.add_noise(clean_image_batch, noise, timesteps)
```

```
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
loss = F.mse_loss(noise_pred, noise)
```

```
# Backprop.
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

And voila!

Full notebook: https://github.com/huggingface/notebooks/blob/main/diffusers/training_example.ipynb

Training a text-conditioned latent space diffusion model:

• The dataset will have image-prompt pairs:

image (image)	text (string)
	"a drawing of a green pokemon with red eyes"
	"a green and yellow toy with a red nose"
	"a red and white ball with an angry look on its face"
	"a cartoon ball with a smile on it's face"
53	"a bunch of balls with faces drawn on them"

https://hf.co/datasets/lambdalabs/pokemon-blip-captions

Training a text-conditioned latent space diffusion model:

- We need ways to:
 - Embed the images
 - Embed the prompts
 - Use a UNet to pass BOTH image and text embeddings for denoising

A minimal training loop:

```
for epoch in range(epochs):
```

```
for images, prompts in dataset:
```

Convert images to latent space

latents = vae.encode(batch["pixel_values"]).latent_dist.sample()

```
# Sample noise to add to the images.
noise = torch.randn_like(latents)
bs = noise.shape[0]
```

Sample a random timestep for each image.

```
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))
```

Add noise to the image latents according to the noise magnitude at each timestep

```
# (this is the forward diffusion process).
```

noisy_images = noise_scheduler.add_noise(latents, noise, timesteps)

A minimal training loop:

```
for epoch in range(epochs):
    for images, prompts in dataset:
        # Convert images to latent space
        latents = vae.encode(batch["pixel_values"]).latent_dist.sample()
```

```
# Sample noise to add to the images.
noise = torch.randn_like(latents)
bs = noise.shape[0]
```

```
# Sample a random timestep for each image.
```

```
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))
```

Add noise to the image latents according to the noise magnitude at each timestep # (this is the forward diffusion process).

noisy_images = noise_scheduler.add_noise(latents, noise, timesteps)

A minimal training loop:

for epoch in range(epochs):

```
for images, prompts in dataset:
```

•••

```
# Compute text embeddings.
text_embeddings = text_encoder(prompts)[0]
```

Predict the noise residual

```
model_pred = unet(noisy_latents, timesteps, text_embeddings).sample
loss = F.mse_loss(model_pred, noise)
```

Backprop. loss.backward() optimizer.step() optimizer.zero_grad()

A minimal training loop:

for epoch in range(epochs):

for images, prompts in dataset:

•••

```
# Compute text embeddings.
```

```
text_embeddings = text_encoder(prompts)[0]
```

```
# Predict the noise residual
```

model_pred = unet(noisy_latents, timesteps, text_embeddings).sample
loss = F.mse_loss(model_pred, noise)

Backprop.

loss.backward()
optimizer.step()

optimizer.zero_grad()

And voila!

"cute Sundar Pichai character"

Full example: <u>https://github.com/huggingface/diffusers/blob/main/examples/text_to_image</u>

Prediction targets can be configured:

```
if noise_scheduler.config.prediction_type == "epsilon":
    target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
    target = noise_scheduler.get_velocity(latents, noise, timesteps)
```

loss = F.mse_loss(model_pred, target)

There many more features in our training examples:

- Faster convergence with Min-SNR
- Offset noise for learning better contrast and brightness
- Noise perturbation
- Qualitative validation

Other good-to-have features

- Support for distributed training with 🤗 accelerate
- Memory optimization:
 - Easy FP16 training
 - Memory-efficient attention
 - Attention slicing
 - VAE tiling
 - LoRA for parameter-efficient fine-tuning

Docs: https://huggingface.co/docs/diffusers/main/en/optimization/fp16

Some implementations for reference

The following works are built on top of 📏 diffusers that perform training:

- Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation, Wu et al., 2022.
- Training Diffusion Models with Reinforcement Learning, Black et al., 2023.
- Instruction-tuning Stable Diffusion, Paul et al., 2023.

Inference-time optimizations are also easy

- Training-free improvements to Diffusion systems:
 - Attend and Excite
 - Zero-shot Image Translation
 - Semantic Guidance
- All of these are subclassed from DiffusionPipeline.
- Refer to the source code of these pipelines to know more.
- Community pipelines reference:

https://hf.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline

SCAN ME

IF prompt: A cute panda standing amidst a mountain and holding a placard saying "Thank you!"