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Presenting this work on behalf of the 
Diffusers team (past and current) and the 
dear community 🤗



Plan of attack
(1) Generative models - a brief intro

(2) 🧨 diffusers for image generation and beyond

(3) Making 🧨 diffusers research-friendly 

Feel free to interrupt with questions anytime :)



Generative Models

Image from “What are Diffusion Models” by Lilian Weng



Generative Models

Image from “What are Diffusion Models” by Lilian Weng

Doesn’t include 
language models, I 
know!



Generative Models

Image from “What are Diffusion Models” by Lilian Weng

Today’s focus



For the next couple of slides, we will 
concentrate on “image” diffusion models 
🌠



Diffusion models
What happens when you refine a noise vector to become a realistic image? 

adityaramesh.com/posts/dalle2/dalle2.html

http://adityaramesh.com/posts/dalle2/dalle2.html


Diffusion models
What happens when you refine a noise vector to become a realistic image? 

https://nvlabs.github.io/denoising-diffusion-gan/



Diffusion models
When you “condition” the denoising process with text: 

DALL-E 2 prompt: “A photo of a white fur monster 
standing in a purple room”



Diffusion models – the path
● Deep unsupervised learning using nonequilibrium thermodynamics (2015)
● Denoising Diffusion Probabilistic Models (2020)
● Denoising Diffusion Implicit Models (2020)
● Diffusion Models Beat GANs on Image Synthesis (2021)
● Classifier-Free Diffusion Guidance (2021)
● GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided 

Diffusion Models (2022)
● High-Resolution Image Synthesis with Latent Diffusion Models (2022)1 
● Elucidating the Design Space of Diffusion-Based Generative Models (2022)2
● Hierarchical Text-Conditional Image Generation with CLIP Latents (2022)3
● Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding 

(2022)4

1 - Scaled to Stable Diffusion
2 - The “Karras paper”
3 - DALLE-2 
4 - Imagen



Some popular diffusion models for images
● DALL-E 2 (OpenAI)

● Stable Diffusion (Stability AI, CompVis, RunwayML, LAION)

● Imagen (Google)

● IF (DeepFloyd)

● Kandinsky (AI Forever) 



But …
Not all these models are open-source!

● Stable Diffusion - ✅
● Stable unCLIP (Stability AI version) - ✅
● unCLIP (Kakao Brain version)  - ✅
● IF (Imagen-like model from DeepFloyd and Stability AI) - ✅
● Kandinsky - ✅
● DALL-E 2 - ❌
● Imagen - ❌



Why make them open? 
● Study the risk factors and failure cases

● Evaluate safety measurements 

● Build on top of them 

● Improve them 



🧨 diffusers

A Python library maintained at 🤗 

● Providing open and responsible access 

to pre-trained diffusion models. 

● Democratizing the ecosystem of diffusion 

models by making them easy to use.

https://github.com/huggingface/diffusers

https://github.com/huggingface/diffusers


Text-to-image with 🧨 diffusers

from diffusers import StableDiffusionPipeline

model_id = "runwayml/stable-diffusion-v1-5"
pipeline = StableDiffusionPipeline.from_pretrained(model_id)
pipeline = pipeline.to("cuda")

image = pipeline("An astronaut riding a tiger").images[0]
image.save("image.png")

https://hf.co/docs/diffusers/api/pipelines/stable_diffusion/overview 

https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview


Text-to-image with 🧨 diffusers

from diffusers import DiffusionPipeline
import torch

# prior model
pipe_prior = DiffusionPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

# text-to-image model
t2i_pipe = DiffusionPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
t2i_pipe.to("cuda")

prompt = "A car exploding into colorful dust"
image_embeds, negative_image_embeds = pipe_prior(prompt, 
generator=generator).to_tuple()
image = t2i_pipe(
    prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds
).images[0]
image.save("image.png")

https://hf.co/docs/diffusers/main/en/api/pipelines/kandinsky

Striving for photorealism 

https://hf.co/docs/diffusers/main/en/api/pipelines/kandinsky


Image variations with Stable unCLIP and 🧨 diffusers

from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers.utils import load_image
import torch

pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-unclip",
    torch_dtype=torch.float16,
    variation="fp16"
)

init_image = load_image(<image_url>)
images = pipe(init_image, num_images_per_prompt=3).images

https://hf.co/docs/diffusers/api/pipelines/stable_unclip

https://huggingface.co/docs/diffusers/api/pipelines/stable_unclip


Text-to-video with 🧨 diffusers 

import torch
import imageio
from diffusers import TextToVideoZeroPipeline

pipe = TextToVideoZeroPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16
)

prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.gif", result, "GIF", fps=4)

https://hf.co/docs/diffusers/api/pipelines/text_to_video_zero



Community’s favorite: ControlNet 🎨

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet
)

prompt = "Darth Vader dancing in a desert"
image = pipe(prompt, image=openpose_image).images[0]

https://hf.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet



Community’s favorite: ControlNet 🎨
"Darth Vader dancing in a desert"



Community’s favorite: ControlNet 🎨
"a giant standing in a fantasy landscape, best quality"

Canny map Pose Final image



ControlNet + Video 🎨🎥
"Darth Vader dancing in a desert"

https://hf.co/docs/diffusers/main/en/api/pipelines/text_to_video_zero



You also asked for models that can spell 
characters well :)



Fresh off the press - IF 

https://hf.co/blog/if

Running a 43.2 GB system in a free-tier Colab Notebook (T4 GPU)

Taken from 
https://hf.co/DeepFloyd/IF-I-XL-v1.0

https://hf.co/DeepFloyd/IF-I-XL-v1.0


Exploring 🧨 diffusers
“🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models 

for generating images, audio, and even 3D structures of molecules. Whether 

you’re looking for a simple inference solution or want to train your own diffusion 

model, 🤗 Diffusers is a modular toolbox that supports both. Our library is 

designed with a focus on usability over performance, simple over easy, and 

customizability over abstractions.” - https://hf.co/docs/diffusers 

https://huggingface.co/docs/diffusers


Exploring 🧨 diffusers
Various pipelines exploration:

● Image translation (think of CycleGAN like stuff) 

● Text to video generation 

● Latent space manipulation

● Image editing with human-readable instructions 

● Semantic guidance

● and more (including AUDIO pipelines)!

https://hf.co/docs/diffusers/main/en/api/pipelines

https://huggingface.co/docs/diffusers/main/en/api/pipelines


Exploring 🧨 diffusers
Various pipelines exploration:

● Image translation (think of CycleGAN like stuff) 

● Text to video generation 

● Latent space manipulation

● Image editing with human-readable instructions 

● Semantic guidance

● and more (including AUDIO pipelines)!

https://hf.co/docs/diffusers/main/en/api/pipelines

DiffusionPipeline

https://huggingface.co/docs/diffusers/main/en/api/pipelines


Exploring 🧨 diffusers
Swapping components of a pipeline for rapid experimentation: 

import torch
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler

pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images

https://hf.co/docs/diffusers/using-diffusers/schedulers

New 
scheduler



Exploring 🧨 diffusers
Swapping components of a pipeline for rapid experimentation: 

import torch
from diffusers import StableDiffusionPipeline, UNet2DConditionModel

unet = UNet2DConditionModel.from_pretrained(
    "valhalla/sd-pokemon-model",
    subfolder="unet",
    torch_dtype=torch.float16
)
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    unet=unet,
    torch_dtype=torch.float16
)

prompt = "cute Sundar Pichai character"
result = pipe(prompt=prompt).images

https://hf.co/docs/diffusers/using-diffusers/loading

New UNet



Exploring 🧨 diffusers
"cute Sundar Pichai character"



Exploring 🧨 diffusers
Train your own models 🔥

https://github.com/huggingface/diffusers/tree/main/examples/



Modular design for research
Training for unconditional generation:

Sample dataset



Modular design for research
Training for unconditional generation:

To learn

Image from the DDPM paper.



Modular design for research
We add noise to an image according to a noise schedule:

noise_scheduler = DDPMScheduler(num_train_timesteps=1000)

noise = torch.randn(sample_image.shape)

timesteps = torch.LongTensor([50])

noisy_image = noise_scheduler.add_noise(sample_image, noise, 

timesteps)

noisy_image = ((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5)

Image.fromarray(noisy_image.type(torch.uint8).numpy()[0])



Modular design for research
We need a model (neural net) to predict the less noisy image: 

from diffusers import UNet2DModel

model = UNet2DModel(...)



Modular design for research
A minimal training loop: 

for epoch in range(epochs):
    for clean_image_batch in dataset:
        # Sample noise to add to the images.
        noise = torch.randn(clean_image_batch.shape).to(clean_image_batch)
        bs = clean_image_batch.shape[0]

        # Sample a random timestep for each image.
        timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))

        # Add noise to the clean images according to the noise magnitude at
        # each timestep (this is the forward diffusion process).
        noisy_images = noise_scheduler.add_noise(clean_image_batch, noise, timesteps)

        # Predict the noise residual
        noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
        loss = F.mse_loss(noise_pred, noise)

        # Backprop.
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()



Modular design for research
And voila!

Full notebook: https://github.com/huggingface/notebooks/blob/main/diffusers/training_example.ipynb



Modular design for research
Training a text-conditioned latent space diffusion model:

● The dataset will have image-prompt pairs: 

https://hf.co/datasets/lambdalabs/pokemon-blip-captions



Modular design for research
Training a text-conditioned latent space diffusion model:

● We need ways to:

○ Embed the images

○ Embed the prompts 

○ Use a UNet to pass BOTH image and text embeddings for denoising 



Modular design for research
A minimal training loop: 

for epoch in range(epochs):

    for images, prompts in dataset:

        # Convert images to latent space

        latents = vae.encode(batch["pixel_values"]).latent_dist.sample()

        # Sample noise to add to the images.

        noise = torch.randn_like(latents)

        bs = noise.shape[0]

        # Sample a random timestep for each image.

        timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))

        # Add noise to the image latents according to the noise magnitude at each timestep

        # (this is the forward diffusion process).

        noisy_images = noise_scheduler.add_noise(latents, noise, timesteps)



Modular design for research
A minimal training loop: 

for epoch in range(epochs):

    for images, prompts in dataset:

        # Convert images to latent space

        latents = vae.encode(batch["pixel_values"]).latent_dist.sample()

        # Sample noise to add to the images.

        noise = torch.randn_like(latents)

        bs = noise.shape[0]

        # Sample a random timestep for each image.

        timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))

        # Add noise to the image latents according to the noise magnitude at each timestep

        # (this is the forward diffusion process).

        noisy_images = noise_scheduler.add_noise(latents, noise, timesteps)



Modular design for research
A minimal training loop: 

for epoch in range(epochs):

    for images, prompts in dataset:

        ...

        # Compute text embeddings.

        text_embeddings = text_encoder(prompts)[0]

        # Predict the noise residual

        model_pred = unet(noisy_latents, timesteps, text_embeddings).sample

        loss = F.mse_loss(model_pred, noise)

        # Backprop.

        loss.backward()

        optimizer.step()

        optimizer.zero_grad()



Modular design for research
A minimal training loop: 

for epoch in range(epochs):

    for images, prompts in dataset:

        ...

        # Compute text embeddings.

        text_embeddings = text_encoder(prompts)[0]

        # Predict the noise residual

        model_pred = unet(noisy_latents, timesteps, text_embeddings).sample

        loss = F.mse_loss(model_pred, noise)

        # Backprop.

        loss.backward()

        optimizer.step()

        optimizer.zero_grad()



Modular design for research
And voila!

Full example: https://github.com/huggingface/diffusers/blob/main/examples/text_to_image

"cute Sundar Pichai character"



Modular design for research
Prediction targets can be configured:

if noise_scheduler.config.prediction_type == "epsilon":
    target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
    target = noise_scheduler.get_velocity(latents, noise, timesteps)

loss = F.mse_loss(model_pred, target)



Modular design for research
There many more features in our training examples:

● Faster convergence with Min-SNR

● Offset noise for learning better contrast and brightness 

● Noise perturbation 

● Qualitative validation 



Other good-to-have features
● Support for distributed training with 🤗 accelerate 

● Memory optimization: 

○ Easy FP16 training

○ Memory-efficient attention 

○ Attention slicing 

○ VAE tiling 

○ LoRA for parameter-efficient fine-tuning 

Docs: https://huggingface.co/docs/diffusers/main/en/optimization/fp16



Some implementations for reference
The following works are built on top of 🧨 diffusers that perform training:

● Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video 

Generation, Wu et al., 2022. 

● Training Diffusion Models with Reinforcement Learning, Black et al., 2023.

● Instruction-tuning Stable Diffusion, Paul et al., 2023. 



Inference-time optimizations are also easy
● Training-free improvements to Diffusion systems:

○ Attend and Excite

○ Zero-shot Image Translation 

○ Semantic Guidance 

● All of these are subclassed from DiffusionPipeline.

● Refer to the source code of these pipelines to know more.

● Community pipelines reference: 

https://hf.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline 

https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline


IF prompt: A cute panda standing amidst a 
mountain and holding a placard saying “Thank 
you!”


