
🧨 diffusers for Democratizing
Diffusion Models
IISc, June 11 2023
Sayak Paul, Hugging Face 🤗
@RisingSayak

Presenting this work on behalf of the
Diffusers team (past and current) and the
dear community 🤗

Plan of attack
(1) Generative models - a brief intro

(2) 🧨 diffusers for image generation and beyond

(3) Making 🧨 diffusers research-friendly

Feel free to interrupt with questions anytime :)

Generative Models

Image from “What are Diffusion Models” by Lilian Weng

Generative Models

Image from “What are Diffusion Models” by Lilian Weng

Doesn’t include
language models, I
know!

Generative Models

Image from “What are Diffusion Models” by Lilian Weng

Today’s focus

For the next couple of slides, we will
concentrate on “image” diffusion models
🌠

Diffusion models
What happens when you refine a noise vector to become a realistic image?

adityaramesh.com/posts/dalle2/dalle2.html

http://adityaramesh.com/posts/dalle2/dalle2.html

Diffusion models
What happens when you refine a noise vector to become a realistic image?

https://nvlabs.github.io/denoising-diffusion-gan/

Diffusion models
When you “condition” the denoising process with text:

DALL-E 2 prompt: “A photo of a white fur monster
standing in a purple room”

Diffusion models – the path
● Deep unsupervised learning using nonequilibrium thermodynamics (2015)
● Denoising Diffusion Probabilistic Models (2020)
● Denoising Diffusion Implicit Models (2020)
● Diffusion Models Beat GANs on Image Synthesis (2021)
● Classifier-Free Diffusion Guidance (2021)
● GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided

Diffusion Models (2022)
● High-Resolution Image Synthesis with Latent Diffusion Models (2022)1
● Elucidating the Design Space of Diffusion-Based Generative Models (2022)2
● Hierarchical Text-Conditional Image Generation with CLIP Latents (2022)3
● Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

(2022)4

1 - Scaled to Stable Diffusion
2 - The “Karras paper”
3 - DALLE-2
4 - Imagen

Some popular diffusion models for images
● DALL-E 2 (OpenAI)

● Stable Diffusion (Stability AI, CompVis, RunwayML, LAION)

● Imagen (Google)

● IF (DeepFloyd)

● Kandinsky (AI Forever)

But …
Not all these models are open-source!

● Stable Diffusion - ✅
● Stable unCLIP (Stability AI version) - ✅
● unCLIP (Kakao Brain version) - ✅
● IF (Imagen-like model from DeepFloyd and Stability AI) - ✅
● Kandinsky - ✅
● DALL-E 2 - ❌
● Imagen - ❌

Why make them open?
● Study the risk factors and failure cases

● Evaluate safety measurements

● Build on top of them

● Improve them

🧨 diffusers

A Python library maintained at 🤗

● Providing open and responsible access

to pre-trained diffusion models.

● Democratizing the ecosystem of diffusion

models by making them easy to use.

https://github.com/huggingface/diffusers

https://github.com/huggingface/diffusers

Text-to-image with 🧨 diffusers

from diffusers import StableDiffusionPipeline

model_id = "runwayml/stable-diffusion-v1-5"
pipeline = StableDiffusionPipeline.from_pretrained(model_id)
pipeline = pipeline.to("cuda")

image = pipeline("An astronaut riding a tiger").images[0]
image.save("image.png")

https://hf.co/docs/diffusers/api/pipelines/stable_diffusion/overview

https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview

Text-to-image with 🧨 diffusers

from diffusers import DiffusionPipeline
import torch

prior model
pipe_prior = DiffusionPipeline.from_pretrained(
 "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

text-to-image model
t2i_pipe = DiffusionPipeline.from_pretrained(
 "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
t2i_pipe.to("cuda")

prompt = "A car exploding into colorful dust"
image_embeds, negative_image_embeds = pipe_prior(prompt,
generator=generator).to_tuple()
image = t2i_pipe(
 prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds
).images[0]
image.save("image.png")

https://hf.co/docs/diffusers/main/en/api/pipelines/kandinsky

Striving for photorealism

https://hf.co/docs/diffusers/main/en/api/pipelines/kandinsky

Image variations with Stable unCLIP and 🧨 diffusers

from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers.utils import load_image
import torch

pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
 "stabilityai/stable-diffusion-2-1-unclip",
 torch_dtype=torch.float16,
 variation="fp16"
)

init_image = load_image(<image_url>)
images = pipe(init_image, num_images_per_prompt=3).images

https://hf.co/docs/diffusers/api/pipelines/stable_unclip

https://huggingface.co/docs/diffusers/api/pipelines/stable_unclip

Text-to-video with 🧨 diffusers

import torch
import imageio
from diffusers import TextToVideoZeroPipeline

pipe = TextToVideoZeroPipeline.from_pretrained(
 "runwayml/stable-diffusion-v1-5",
 torch_dtype=torch.float16
)

prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.gif", result, "GIF", fps=4)

https://hf.co/docs/diffusers/api/pipelines/text_to_video_zero

Community’s favorite: ControlNet 🎨

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
 "runwayml/stable-diffusion-v1-5", controlnet=controlnet
)

prompt = "Darth Vader dancing in a desert"
image = pipe(prompt, image=openpose_image).images[0]

https://hf.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet

Community’s favorite: ControlNet 🎨
"Darth Vader dancing in a desert"

Community’s favorite: ControlNet 🎨
"a giant standing in a fantasy landscape, best quality"

Canny map Pose Final image

ControlNet + Video 🎨🎥
"Darth Vader dancing in a desert"

https://hf.co/docs/diffusers/main/en/api/pipelines/text_to_video_zero

You also asked for models that can spell
characters well :)

Fresh off the press - IF

https://hf.co/blog/if

Running a 43.2 GB system in a free-tier Colab Notebook (T4 GPU)

Taken from
https://hf.co/DeepFloyd/IF-I-XL-v1.0

https://hf.co/DeepFloyd/IF-I-XL-v1.0

Exploring 🧨 diffusers
“🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models

for generating images, audio, and even 3D structures of molecules. Whether

you’re looking for a simple inference solution or want to train your own diffusion

model, 🤗 Diffusers is a modular toolbox that supports both. Our library is

designed with a focus on usability over performance, simple over easy, and

customizability over abstractions.” - https://hf.co/docs/diffusers

https://huggingface.co/docs/diffusers

Exploring 🧨 diffusers
Various pipelines exploration:

● Image translation (think of CycleGAN like stuff)

● Text to video generation

● Latent space manipulation

● Image editing with human-readable instructions

● Semantic guidance

● and more (including AUDIO pipelines)!

https://hf.co/docs/diffusers/main/en/api/pipelines

https://huggingface.co/docs/diffusers/main/en/api/pipelines

Exploring 🧨 diffusers
Various pipelines exploration:

● Image translation (think of CycleGAN like stuff)

● Text to video generation

● Latent space manipulation

● Image editing with human-readable instructions

● Semantic guidance

● and more (including AUDIO pipelines)!

https://hf.co/docs/diffusers/main/en/api/pipelines

DiffusionPipeline

https://huggingface.co/docs/diffusers/main/en/api/pipelines

Exploring 🧨 diffusers
Swapping components of a pipeline for rapid experimentation:

import torch
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler

pipe = StableDiffusionPipeline.from_pretrained(
 "runwayml/stable-diffusion-v1-5",
 torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images

https://hf.co/docs/diffusers/using-diffusers/schedulers

New
scheduler

Exploring 🧨 diffusers
Swapping components of a pipeline for rapid experimentation:

import torch
from diffusers import StableDiffusionPipeline, UNet2DConditionModel

unet = UNet2DConditionModel.from_pretrained(
 "valhalla/sd-pokemon-model",
 subfolder="unet",
 torch_dtype=torch.float16
)
pipe = StableDiffusionPipeline.from_pretrained(
 "CompVis/stable-diffusion-v1-4",
 unet=unet,
 torch_dtype=torch.float16
)

prompt = "cute Sundar Pichai character"
result = pipe(prompt=prompt).images

https://hf.co/docs/diffusers/using-diffusers/loading

New UNet

Exploring 🧨 diffusers
"cute Sundar Pichai character"

Exploring 🧨 diffusers
Train your own models 🔥

https://github.com/huggingface/diffusers/tree/main/examples/

Modular design for research
Training for unconditional generation:

Sample dataset

Modular design for research
Training for unconditional generation:

To learn

Image from the DDPM paper.

Modular design for research
We add noise to an image according to a noise schedule:

noise_scheduler = DDPMScheduler(num_train_timesteps=1000)

noise = torch.randn(sample_image.shape)

timesteps = torch.LongTensor([50])

noisy_image = noise_scheduler.add_noise(sample_image, noise,

timesteps)

noisy_image = ((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5)

Image.fromarray(noisy_image.type(torch.uint8).numpy()[0])

Modular design for research
We need a model (neural net) to predict the less noisy image:

from diffusers import UNet2DModel

model = UNet2DModel(...)

Modular design for research
A minimal training loop:

for epoch in range(epochs):
 for clean_image_batch in dataset:
 # Sample noise to add to the images.
 noise = torch.randn(clean_image_batch.shape).to(clean_image_batch)
 bs = clean_image_batch.shape[0]

 # Sample a random timestep for each image.
 timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))

 # Add noise to the clean images according to the noise magnitude at
 # each timestep (this is the forward diffusion process).
 noisy_images = noise_scheduler.add_noise(clean_image_batch, noise, timesteps)

 # Predict the noise residual
 noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
 loss = F.mse_loss(noise_pred, noise)

 # Backprop.
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

Modular design for research
And voila!

Full notebook: https://github.com/huggingface/notebooks/blob/main/diffusers/training_example.ipynb

Modular design for research
Training a text-conditioned latent space diffusion model:

● The dataset will have image-prompt pairs:

https://hf.co/datasets/lambdalabs/pokemon-blip-captions

Modular design for research
Training a text-conditioned latent space diffusion model:

● We need ways to:

○ Embed the images

○ Embed the prompts

○ Use a UNet to pass BOTH image and text embeddings for denoising

Modular design for research
A minimal training loop:

for epoch in range(epochs):

 for images, prompts in dataset:

 # Convert images to latent space

 latents = vae.encode(batch["pixel_values"]).latent_dist.sample()

 # Sample noise to add to the images.

 noise = torch.randn_like(latents)

 bs = noise.shape[0]

 # Sample a random timestep for each image.

 timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))

 # Add noise to the image latents according to the noise magnitude at each timestep

 # (this is the forward diffusion process).

 noisy_images = noise_scheduler.add_noise(latents, noise, timesteps)

Modular design for research
A minimal training loop:

for epoch in range(epochs):

 for images, prompts in dataset:

 # Convert images to latent space

 latents = vae.encode(batch["pixel_values"]).latent_dist.sample()

 # Sample noise to add to the images.

 noise = torch.randn_like(latents)

 bs = noise.shape[0]

 # Sample a random timestep for each image.

 timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,))

 # Add noise to the image latents according to the noise magnitude at each timestep

 # (this is the forward diffusion process).

 noisy_images = noise_scheduler.add_noise(latents, noise, timesteps)

Modular design for research
A minimal training loop:

for epoch in range(epochs):

 for images, prompts in dataset:

 ...

 # Compute text embeddings.

 text_embeddings = text_encoder(prompts)[0]

 # Predict the noise residual

 model_pred = unet(noisy_latents, timesteps, text_embeddings).sample

 loss = F.mse_loss(model_pred, noise)

 # Backprop.

 loss.backward()

 optimizer.step()

 optimizer.zero_grad()

Modular design for research
A minimal training loop:

for epoch in range(epochs):

 for images, prompts in dataset:

 ...

 # Compute text embeddings.

 text_embeddings = text_encoder(prompts)[0]

 # Predict the noise residual

 model_pred = unet(noisy_latents, timesteps, text_embeddings).sample

 loss = F.mse_loss(model_pred, noise)

 # Backprop.

 loss.backward()

 optimizer.step()

 optimizer.zero_grad()

Modular design for research
And voila!

Full example: https://github.com/huggingface/diffusers/blob/main/examples/text_to_image

"cute Sundar Pichai character"

Modular design for research
Prediction targets can be configured:

if noise_scheduler.config.prediction_type == "epsilon":
 target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
 target = noise_scheduler.get_velocity(latents, noise, timesteps)

loss = F.mse_loss(model_pred, target)

Modular design for research
There many more features in our training examples:

● Faster convergence with Min-SNR

● Offset noise for learning better contrast and brightness

● Noise perturbation

● Qualitative validation

Other good-to-have features
● Support for distributed training with 🤗 accelerate

● Memory optimization:

○ Easy FP16 training

○ Memory-efficient attention

○ Attention slicing

○ VAE tiling

○ LoRA for parameter-efficient fine-tuning

Docs: https://huggingface.co/docs/diffusers/main/en/optimization/fp16

Some implementations for reference
The following works are built on top of 🧨 diffusers that perform training:

● Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video

Generation, Wu et al., 2022.

● Training Diffusion Models with Reinforcement Learning, Black et al., 2023.

● Instruction-tuning Stable Diffusion, Paul et al., 2023.

Inference-time optimizations are also easy
● Training-free improvements to Diffusion systems:

○ Attend and Excite

○ Zero-shot Image Translation

○ Semantic Guidance

● All of these are subclassed from DiffusionPipeline.

● Refer to the source code of these pipelines to know more.

● Community pipelines reference:

https://hf.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline

https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline

IF prompt: A cute panda standing amidst a
mountain and holding a placard saying “Thank
you!”

