File size: 9,051 Bytes
bc92237 0f7c6fd bc92237 0f7c6fd bc92237 0f7c6fd bc92237 0f7c6fd bc92237 0f7c6fd bc92237 0f7c6fd bc92237 0f7c6fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Localized Narratives"""
import json
import datasets
_CITATION = """
@inproceedings{PontTuset_eccv2020,
author = {Jordi Pont-Tuset and Jasper Uijlings and Soravit Changpinyo and Radu Soricut and Vittorio Ferrari},
title = {Connecting Vision and Language with Localized Narratives},
booktitle = {ECCV},
year = {2020}
}
"""
_DESCRIPTION = """
Localized Narratives, a new form of multimodal image annotations connecting vision and language.
We ask annotators to describe an image with their voice while simultaneously hovering their mouse over the region they are describing.
Since the voice and the mouse pointer are synchronized, we can localize every single word in the description.
This dense visual grounding takes the form of a mouse trace segment per word and is unique to our data.
We annotated 849k images with Localized Narratives: the whole COCO, Flickr30k, and ADE20K datasets, and 671k images of Open Images, all of which we make publicly available.
"""
_HOMEPAGE = "https://google.github.io/localized-narratives/"
_LICENSE = "CC BY 4.0"
_ANNOTATION_URLs = {
"train": [
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00000-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00001-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00002-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00003-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00004-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00005-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00006-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00007-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00008-of-00010.jsonl",
"https://storage.googleapis.com/localized-narratives/annotations/open_images_train_v6_localized_narratives-00009-of-00010.jsonl",
],
"validation": [
"https://storage.googleapis.com/localized-narratives/annotations/open_images_validation_localized_narratives.jsonl"
],
"test": [
"https://storage.googleapis.com/localized-narratives/annotations/open_images_test_localized_narratives.jsonl"
],
}
_FEATURES = {
"OpenImages": datasets.Features(
{
"image": datasets.Image(),
"image_url": datasets.Value("string"),
"dataset_id": datasets.Value("string"),
"image_id": datasets.Value("string"),
"annotator_id": datasets.Value("int32"),
"caption": datasets.Value("string"),
"timed_caption": datasets.Sequence(
{
"utterance": datasets.Value("string"),
"start_time": datasets.Value("float32"),
"end_time": datasets.Value("float32"),
}
),
"traces": datasets.Sequence(
datasets.Sequence(
{
"x": datasets.Value("float32"),
"y": datasets.Value("float32"),
"t": datasets.Value("float32"),
}
)
),
"voice_recording": datasets.Value("string"),
}
),
"OpenImages_captions": datasets.Features(
{
"image": datasets.Image(),
"image_url": datasets.Value("string"),
"dataset_id": datasets.Value("string"),
"image_id": datasets.Value("string"),
"annotator_ids": [datasets.Value("int32")],
"captions": [datasets.Value("string")],
}
),
}
class LocalizedNarrativesOpenImages(datasets.GeneratorBasedBuilder):
"""Builder for Localized Narratives."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="OpenImages",
version=VERSION,
description="OpenImages subset of Localized Narratives"
),
datasets.BuilderConfig(
name="OpenImages_captions",
version=VERSION,
description="OpenImages subset of Localized Narratives where captions are groupped per image (images can have multiple captions). For this subset, `timed_caption`, `traces` and `voice_recording` are not available."
),
]
DEFAULT_CONFIG_NAME = "OpenImages"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=_FEATURES[self.config.name],
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
annotation_files = dl_manager.download(_ANNOTATION_URLs)
return [
datasets.SplitGenerator(
name=split_name,
gen_kwargs={"annotation_list": annotation_list, "split": split_name},
)
for split_name, annotation_list in annotation_files.items()
]
def _generate_examples(self, annotation_list: str, split: str):
if self.config.name == "OpenImages":
return self._generate_examples_original_format(annotation_list, split)
elif self.config.name == "OpenImages_captions":
return self._generate_examples_aggregated_captions(annotation_list, split)
def _generate_examples_original_format(self, annotation_list: str, split: str):
counter = 0
for annotation_file in annotation_list:
with open(annotation_file, "r", encoding="utf-8") as fi:
for line in fi:
annotation = json.loads(line)
image_url = f"https://s3.amazonaws.com/open-images-dataset/{split}/{annotation['image_id']}.jpg"
yield counter, {
"image": image_url,
"image_url": image_url,
"dataset_id": annotation["dataset_id"],
"image_id": annotation["image_id"],
"annotator_id": annotation["annotator_id"],
"caption": annotation["caption"],
"timed_caption": annotation["timed_caption"],
"traces": annotation["traces"],
"voice_recording": annotation["voice_recording"],
}
counter += 1
def _generate_examples_aggregated_captions(self, annotation_list: str, split: str):
result = {}
for annotation_file in annotation_list:
with open(annotation_file, "r", encoding="utf-8") as fi:
for line in fi:
annotation = json.loads(line)
image_url = f"https://s3.amazonaws.com/open-images-dataset/{split}/{annotation['image_id']}.jpg"
image_id = annotation["image_id"]
if image_id in result:
assert result[image_id]["dataset_id"] == annotation["dataset_id"]
assert result[image_id]["image_id"] == annotation["image_id"]
result[image_id]["annotator_ids"].append(annotation["annotator_id"])
result[image_id]["captions"].append(annotation["caption"])
else:
result[image_id] = {
"image": image_url,
"image_url": image_url,
"dataset_id": annotation["dataset_id"],
"image_id": image_id,
"annotator_ids": [annotation["annotator_id"]],
"captions": [annotation["caption"]],
}
counter = 0
for r in result.values():
yield counter, r
counter += 1
|