Datasets:
Improve dataset card: Add task category, library name, tags, and sample usage (#1)
Browse files- Improve dataset card: Add task category, library name, tags, and sample usage (3df68412e3d109aa4646629614cc2e6bc122ae99)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,15 +1,23 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
language:
|
4 |
- en
|
5 |
-
|
6 |
size_categories:
|
7 |
- n<1K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
configs:
|
9 |
- config_name: default
|
10 |
data_files:
|
11 |
- split: test
|
12 |
-
path:
|
13 |
---
|
14 |
|
15 |
<a id="readme-top"></a>
|
@@ -34,9 +42,27 @@ configs:
|
|
34 |
</p>
|
35 |
|
36 |
## Dataset Description
|
37 |
-
LiveMCPBench is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
40 |
|
41 |
## Citation
|
42 |
|
@@ -51,3 +77,4 @@ If you find this project helpful, please use the following to cite it:
|
|
51 |
primaryClass={cs.AI},
|
52 |
url={https://arxiv.org/abs/2508.01780},
|
53 |
}
|
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- en
|
4 |
+
license: apache-2.0
|
5 |
size_categories:
|
6 |
- n<1K
|
7 |
+
pretty_name: LiveMCPBench
|
8 |
+
task_categories:
|
9 |
+
- text-generation
|
10 |
+
library_name: datasets
|
11 |
+
tags:
|
12 |
+
- llm-agents
|
13 |
+
- tool-use
|
14 |
+
- benchmark
|
15 |
+
- mcp
|
16 |
configs:
|
17 |
- config_name: default
|
18 |
data_files:
|
19 |
- split: test
|
20 |
+
path: tasks/tasks.json
|
21 |
---
|
22 |
|
23 |
<a id="readme-top"></a>
|
|
|
42 |
</p>
|
43 |
|
44 |
## Dataset Description
|
45 |
+
LiveMCPBench is the first comprehensive benchmark designed to evaluate LLM agents at scale across diverse Model Context Protocol (MCP) servers. It comprises 95 real-world tasks grounded in the MCP ecosystem, challenging agents to effectively use various tools in daily scenarios within complex, tool-rich, and dynamic environments. To support scalable and reproducible evaluation, LiveMCPBench is complemented by LiveMCPTool (a diverse collection of 70 MCP servers and 527 tools) and LiveMCPEval (an LLM-as-a-Judge framework for automated and adaptive evaluation). The benchmark offers a unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities.
|
46 |
+
|
47 |
+
## Dataset Structure
|
48 |
+
The dataset consists of `tasks.json`, which contains the 95 real-world tasks used for benchmarking LLM agents.
|
49 |
+
|
50 |
+
## Sample Usage
|
51 |
+
|
52 |
+
You can load the dataset using the Hugging Face `datasets` library:
|
53 |
+
|
54 |
+
```python
|
55 |
+
from datasets import load_dataset
|
56 |
+
|
57 |
+
# Load the dataset
|
58 |
+
dataset = load_dataset("ICIP/LiveMCPBench")
|
59 |
+
|
60 |
+
# Print the dataset structure
|
61 |
+
print(dataset)
|
62 |
|
63 |
+
# Access an example from the test split
|
64 |
+
print(dataset["test"][0])
|
65 |
+
```
|
66 |
|
67 |
## Citation
|
68 |
|
|
|
77 |
primaryClass={cs.AI},
|
78 |
url={https://arxiv.org/abs/2508.01780},
|
79 |
}
|
80 |
+
```
|