File size: 9,169 Bytes
e781a9e
b201a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e781a9e
 
 
 
b201a12
e781a9e
b201a12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
license: mit
task_categories:
- text-classification
- feature-extraction
language:
- en
tags:
- software-engineering
- testing
- performance
- llm-serving
- vllm
- benchmarking
- ml-evaluation
pretty_name: vLLM PR Test Classification
size_categories:
- n<1K
configs:
- config_name: default
  data_files:
  - split: train
    path: data/*
---

# vLLM PR Test Classification Dataset

## 🎯 Overview

This dataset contains **98 vLLM project commits** with their corresponding Pull Request (PR) timeline data and comprehensive test type classifications. It provides insights into testing patterns in a major LLM serving infrastructure project.

## 📊 Dataset Description

### Purpose
This dataset was created by analyzing vLLM project PR timelines to:
- Identify different types of testing and benchmarking activities
- Understand testing patterns in LLM infrastructure development
- Provide labeled data for ML models to classify test types in software PRs
- Enable research on performance optimization trends in LLM serving

### Test Categories

Each commit is classified across four test categories:

| Category | Description | Keywords | Prevalence |
|----------|-------------|----------|------------|
| **LM Evaluation** | Language model evaluation tests | `lm_eval`, `gsm8k`, `mmlu`, `hellaswag`, `truthfulqa` | 25.5% |
| **Performance** | Performance benchmarking tests | `TTFT`, `throughput`, `latency`, `ITL`, `TPOT`, `tok/s` | 81.6% |
| **Serving** | Serving functionality tests | `vllm serve`, `API server`, `frontend`, `online serving` | 53.1% |
| **General Test** | General testing activities | `CI`, `pytest`, `unittest`, `buildkite`, `fastcheck` | 96.9% |

## 📈 Dataset Statistics

### Overall Distribution
- **Total commits**: 98
- **Multi-category commits**: 76 (77.6%)
- **Average test types per commit**: 2.57

### Detailed Keyword Frequency

#### Top Performance Keywords (80 commits)
- `throughput`: 241 mentions
- `latency`: 191 mentions
- `profiling`: 114 mentions
- `TTFT` (Time To First Token): 114 mentions
- `ITL` (Inter-token Latency): 114 mentions
- `TPOT` (Time Per Output Token): 108 mentions
- `optimization`: 87 mentions
- `tok/s` (tokens per second): 66 mentions

#### Top LM Evaluation Keywords (25 commits)
- `gsm8k`: 62 mentions
- `lm_eval`: 33 mentions
- `lm-eval`: 9 mentions
- `mmlu`: 3 mentions
- `humaneval`: 1 mention

#### Top Serving Keywords (52 commits)
- `frontend`: 181 mentions
- `serving`: 74 mentions
- `api server`: 42 mentions
- `vllm serve`: 23 mentions
- `online serving`: 19 mentions

## 🗂️ Data Schema

```python
{
    'commit_hash': str,           # Git commit SHA-1 hash (40 chars)
    'pr_url': str,                # GitHub PR URL (e.g., https://github.com/vllm-project/vllm/pull/12601)
    'has_lm_eval': bool,          # True if commit contains LM evaluation tests
    'has_performance': bool,       # True if commit contains performance benchmarks
    'has_serving': bool,          # True if commit contains serving tests
    'has_general_test': bool,     # True if commit contains general tests
    'test_details': str,          # Pipe-separated test keywords (e.g., "PERF: ttft, throughput | TEST: ci, pytest")
    'timeline_text': str,         # Full PR timeline text with comments, reviews, and commit messages
    'extracted_at': str           # ISO timestamp when data was extracted
}
```

## 💻 Usage Examples

### Basic Loading
```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("your-username/vllm-pr-test-classification")

# Explore the data
print(f"Total examples: {len(dataset['train'])}")
print(f"Features: {dataset['train'].features}")
print(f"First example: {dataset['train'][0]}")
```

### Filtering Examples
```python
# Get commits with performance benchmarks
perf_commits = dataset['train'].filter(lambda x: x['has_performance'])
print(f"Performance commits: {len(perf_commits)}")

# Get commits with LM evaluation
lm_eval_commits = dataset['train'].filter(lambda x: x['has_lm_eval'])
print(f"LM evaluation commits: {len(lm_eval_commits)}")

# Get commits with multiple test types
multi_test = dataset['train'].filter(
    lambda x: sum([x['has_lm_eval'], x['has_performance'], 
                   x['has_serving'], x['has_general_test']]) >= 3
)
print(f"Commits with 3+ test types: {len(multi_test)}")
```

### Analysis Example
```python
import pandas as pd

# Convert to pandas for analysis
df = dataset['train'].to_pandas()

# Analyze test type combinations
test_combinations = df[['has_lm_eval', 'has_performance', 'has_serving', 'has_general_test']]
combination_counts = test_combinations.value_counts()
print("Most common test combinations:")
print(combination_counts.head())

# Extract performance metrics mentioned
perf_df = df[df['has_performance']]
print(f"\nCommits mentioning specific metrics:")
print(f"TTFT mentions: {perf_df['test_details'].str.contains('TTFT').sum()}")
print(f"Throughput mentions: {perf_df['test_details'].str.contains('throughput', case=False).sum()}")
```

### Text Classification Training
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer

# Prepare for multi-label classification
def preprocess_function(examples):
    # Create multi-label targets
    labels = []
    for i in range(len(examples['commit_hash'])):
        label = [
            int(examples['has_lm_eval'][i]),
            int(examples['has_performance'][i]),
            int(examples['has_serving'][i]),
            int(examples['has_general_test'][i])
        ]
        labels.append(label)
    
    # Tokenize timeline text
    tokenized = tokenizer(
        examples['timeline_text'],
        truncation=True,
        padding='max_length',
        max_length=512
    )
    tokenized['labels'] = labels
    return tokenized

# Train a classifier to identify test types from PR text
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained(
    "bert-base-uncased",
    num_labels=4,
    problem_type="multi_label_classification"
)
```

## 🔍 Sample Data

### Example 1: Performance-focused commit
```json
{
  "commit_hash": "fc542144c4477ffec1d3de6fa43e54f8fb5351e8",
  "pr_url": "https://github.com/vllm-project/vllm/pull/12563",
  "has_lm_eval": false,
  "has_performance": true,
  "has_serving": false,
  "has_general_test": true,
  "test_details": "PERF: tok/s, optimization | TEST: CI",
  "timeline_text": "[Guided decoding performance optimization]..."
}
```

### Example 2: Comprehensive testing commit
```json
{
  "commit_hash": "aea94362c9bdd08ed2b346701bdc09d278e85f66",
  "pr_url": "https://github.com/vllm-project/vllm/pull/12287",
  "has_lm_eval": true,
  "has_performance": true,
  "has_serving": true,
  "has_general_test": true,
  "test_details": "LM_EVAL: lm_eval, gsm8k | PERF: TTFT, ITL | SERVING: vllm serve | TEST: test, CI",
  "timeline_text": "[Frontend][V1] Online serving performance improvements..."
}
```

## 🛠️ Potential Use Cases

1. **Test Type Classification**: Train models to automatically classify test types in software PRs
2. **Testing Pattern Analysis**: Study how different test types correlate in infrastructure projects
3. **Performance Optimization Research**: Analyze performance testing trends in LLM serving systems
4. **CI/CD Insights**: Understand continuous integration patterns in ML infrastructure projects
5. **Documentation Generation**: Generate test documentation from PR timelines
6. **Code Review Automation**: Build tools to automatically suggest relevant tests based on PR content

## 📚 Source

This dataset was extracted from the [vLLM project](https://github.com/vllm-project/vllm) GitHub repository PR timelines. vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.

## 🔄 Updates

- **v1.0.0** (2025-01): Initial release with 98 commits

## 📜 License

This dataset is released under the MIT License, consistent with the vLLM project's licensing.

## 📖 Citation

If you use this dataset in your research or applications, please cite:

```bibtex
@dataset{vllm_pr_test_classification_2025,
  title={vLLM PR Test Classification Dataset},
  author={vLLM Community Contributors},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/your-username/vllm-pr-test-classification},
  note={A dataset of 98 vLLM commits with test type classifications extracted from GitHub PR timelines}
}
```

## 🤝 Contributing

If you'd like to contribute to this dataset or report issues:
1. Open an issue on the Hugging Face dataset repository
2. Submit improvements via pull requests
3. Share your use cases and findings

## ⚠️ Limitations

- Dataset size is limited to 98 commits
- Timeline text may be truncated for very long PR discussions
- Classification is based on keyword matching, which may miss context-dependent references
- Dataset represents a snapshot from specific time period of vLLM development

## 🙏 Acknowledgments

Thanks to the vLLM project maintainers and contributors for their open-source work that made this dataset possible.