--- license: mit task_categories: - text-classification - feature-extraction language: - en tags: - software-engineering - testing - performance - llm-serving - vllm - benchmarking - ml-evaluation pretty_name: vLLM PR Test Classification size_categories: - n<1K configs: - config_name: default data_files: - split: train path: data/* --- # vLLM PR Test Classification Dataset ## 🎯 Overview This dataset contains **98 vLLM project commits** with their corresponding Pull Request (PR) timeline data and comprehensive test type classifications. It provides insights into testing patterns in a major LLM serving infrastructure project. ## 📊 Dataset Description ### Purpose This dataset was created by analyzing vLLM project PR timelines to: - Identify different types of testing and benchmarking activities - Understand testing patterns in LLM infrastructure development - Provide labeled data for ML models to classify test types in software PRs - Enable research on performance optimization trends in LLM serving ### Test Categories Each commit is classified across four test categories: | Category | Description | Keywords | Prevalence | |----------|-------------|----------|------------| | **LM Evaluation** | Language model evaluation tests | `lm_eval`, `gsm8k`, `mmlu`, `hellaswag`, `truthfulqa` | 25.5% | | **Performance** | Performance benchmarking tests | `TTFT`, `throughput`, `latency`, `ITL`, `TPOT`, `tok/s` | 81.6% | | **Serving** | Serving functionality tests | `vllm serve`, `API server`, `frontend`, `online serving` | 53.1% | | **General Test** | General testing activities | `CI`, `pytest`, `unittest`, `buildkite`, `fastcheck` | 96.9% | ## 📈 Dataset Statistics ### Overall Distribution - **Total commits**: 98 - **Multi-category commits**: 76 (77.6%) - **Average test types per commit**: 2.57 ### Detailed Keyword Frequency #### Top Performance Keywords (80 commits) - `throughput`: 241 mentions - `latency`: 191 mentions - `profiling`: 114 mentions - `TTFT` (Time To First Token): 114 mentions - `ITL` (Inter-token Latency): 114 mentions - `TPOT` (Time Per Output Token): 108 mentions - `optimization`: 87 mentions - `tok/s` (tokens per second): 66 mentions #### Top LM Evaluation Keywords (25 commits) - `gsm8k`: 62 mentions - `lm_eval`: 33 mentions - `lm-eval`: 9 mentions - `mmlu`: 3 mentions - `humaneval`: 1 mention #### Top Serving Keywords (52 commits) - `frontend`: 181 mentions - `serving`: 74 mentions - `api server`: 42 mentions - `vllm serve`: 23 mentions - `online serving`: 19 mentions ## 🗂️ Data Schema ```python { 'commit_hash': str, # Git commit SHA-1 hash (40 chars) 'pr_url': str, # GitHub PR URL (e.g., https://github.com/vllm-project/vllm/pull/12601) 'has_lm_eval': bool, # True if commit contains LM evaluation tests 'has_performance': bool, # True if commit contains performance benchmarks 'has_serving': bool, # True if commit contains serving tests 'has_general_test': bool, # True if commit contains general tests 'test_details': str, # Pipe-separated test keywords (e.g., "PERF: ttft, throughput | TEST: ci, pytest") 'timeline_text': str, # Full PR timeline text with comments, reviews, and commit messages 'extracted_at': str # ISO timestamp when data was extracted } ``` ## 💻 Usage Examples ### Basic Loading ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("your-username/vllm-pr-test-classification") # Explore the data print(f"Total examples: {len(dataset['train'])}") print(f"Features: {dataset['train'].features}") print(f"First example: {dataset['train'][0]}") ``` ### Filtering Examples ```python # Get commits with performance benchmarks perf_commits = dataset['train'].filter(lambda x: x['has_performance']) print(f"Performance commits: {len(perf_commits)}") # Get commits with LM evaluation lm_eval_commits = dataset['train'].filter(lambda x: x['has_lm_eval']) print(f"LM evaluation commits: {len(lm_eval_commits)}") # Get commits with multiple test types multi_test = dataset['train'].filter( lambda x: sum([x['has_lm_eval'], x['has_performance'], x['has_serving'], x['has_general_test']]) >= 3 ) print(f"Commits with 3+ test types: {len(multi_test)}") ``` ### Analysis Example ```python import pandas as pd # Convert to pandas for analysis df = dataset['train'].to_pandas() # Analyze test type combinations test_combinations = df[['has_lm_eval', 'has_performance', 'has_serving', 'has_general_test']] combination_counts = test_combinations.value_counts() print("Most common test combinations:") print(combination_counts.head()) # Extract performance metrics mentioned perf_df = df[df['has_performance']] print(f"\nCommits mentioning specific metrics:") print(f"TTFT mentions: {perf_df['test_details'].str.contains('TTFT').sum()}") print(f"Throughput mentions: {perf_df['test_details'].str.contains('throughput', case=False).sum()}") ``` ### Text Classification Training ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import TrainingArguments, Trainer # Prepare for multi-label classification def preprocess_function(examples): # Create multi-label targets labels = [] for i in range(len(examples['commit_hash'])): label = [ int(examples['has_lm_eval'][i]), int(examples['has_performance'][i]), int(examples['has_serving'][i]), int(examples['has_general_test'][i]) ] labels.append(label) # Tokenize timeline text tokenized = tokenizer( examples['timeline_text'], truncation=True, padding='max_length', max_length=512 ) tokenized['labels'] = labels return tokenized # Train a classifier to identify test types from PR text tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = AutoModelForSequenceClassification.from_pretrained( "bert-base-uncased", num_labels=4, problem_type="multi_label_classification" ) ``` ## 🔍 Sample Data ### Example 1: Performance-focused commit ```json { "commit_hash": "fc542144c4477ffec1d3de6fa43e54f8fb5351e8", "pr_url": "https://github.com/vllm-project/vllm/pull/12563", "has_lm_eval": false, "has_performance": true, "has_serving": false, "has_general_test": true, "test_details": "PERF: tok/s, optimization | TEST: CI", "timeline_text": "[Guided decoding performance optimization]..." } ``` ### Example 2: Comprehensive testing commit ```json { "commit_hash": "aea94362c9bdd08ed2b346701bdc09d278e85f66", "pr_url": "https://github.com/vllm-project/vllm/pull/12287", "has_lm_eval": true, "has_performance": true, "has_serving": true, "has_general_test": true, "test_details": "LM_EVAL: lm_eval, gsm8k | PERF: TTFT, ITL | SERVING: vllm serve | TEST: test, CI", "timeline_text": "[Frontend][V1] Online serving performance improvements..." } ``` ## 🛠️ Potential Use Cases 1. **Test Type Classification**: Train models to automatically classify test types in software PRs 2. **Testing Pattern Analysis**: Study how different test types correlate in infrastructure projects 3. **Performance Optimization Research**: Analyze performance testing trends in LLM serving systems 4. **CI/CD Insights**: Understand continuous integration patterns in ML infrastructure projects 5. **Documentation Generation**: Generate test documentation from PR timelines 6. **Code Review Automation**: Build tools to automatically suggest relevant tests based on PR content ## 📚 Source This dataset was extracted from the [vLLM project](https://github.com/vllm-project/vllm) GitHub repository PR timelines. vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. ## 🔄 Updates - **v1.0.0** (2025-01): Initial release with 98 commits ## 📜 License This dataset is released under the MIT License, consistent with the vLLM project's licensing. ## 📖 Citation If you use this dataset in your research or applications, please cite: ```bibtex @dataset{vllm_pr_test_classification_2025, title={vLLM PR Test Classification Dataset}, author={vLLM Community Contributors}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/datasets/your-username/vllm-pr-test-classification}, note={A dataset of 98 vLLM commits with test type classifications extracted from GitHub PR timelines} } ``` ## 🤝 Contributing If you'd like to contribute to this dataset or report issues: 1. Open an issue on the Hugging Face dataset repository 2. Submit improvements via pull requests 3. Share your use cases and findings ## ⚠️ Limitations - Dataset size is limited to 98 commits - Timeline text may be truncated for very long PR discussions - Classification is based on keyword matching, which may miss context-dependent references - Dataset represents a snapshot from specific time period of vLLM development ## 🙏 Acknowledgments Thanks to the vLLM project maintainers and contributors for their open-source work that made this dataset possible.