Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -11,58 +11,43 @@ tags:
|
|
| 11 |
- vision-language
|
| 12 |
---
|
| 13 |
|
| 14 |
-
#
|
| 15 |
|
| 16 |
-
This repository contains the dataset for the paper [
|
| 17 |
|
| 18 |
-
This
|
| 19 |
|
| 20 |
For more details and related resources:
|
| 21 |
-
- **Paper**: [
|
| 22 |
- **Code (GitHub)**: https://github.com/JingbiaoMei/RGCL
|
| 23 |
- **Project Page**: https://rgclmm.github.io/
|
| 24 |
|
| 25 |
-
### Sample Usage
|
| 26 |
-
|
| 27 |
-
The following instructions are derived from the [GitHub repository](https://github.com/JingbiaoMei/RGCL) and show how to set up the environment and generate embeddings for the dataset.
|
| 28 |
-
|
| 29 |
-
#### Setup Environment for RA-HMD
|
| 30 |
-
|
| 31 |
-
```bash
|
| 32 |
-
git clone https://github.com/JingbiaoMei/RGCL.git
|
| 33 |
-
cd RGCL/LLAMA-FACTORY
|
| 34 |
-
conda create -n llamafact python=3.10
|
| 35 |
-
conda activate llamafact
|
| 36 |
-
pip install -e ".[torch,metrics,deepspeed,liger-kernel,bitsandbytes,qwen]"
|
| 37 |
-
pip install torchmetrics wandb easydict
|
| 38 |
-
pip install qwen_vl_utils torchvision
|
| 39 |
-
# Install FAISS
|
| 40 |
-
conda install -c pytorch -c nvidia faiss-gpu=1.7.4 mkl=2021 blas=1.0=mkl
|
| 41 |
-
```
|
| 42 |
-
|
| 43 |
-
#### Dataset Preparation - Generate CLIP Embedding
|
| 44 |
-
|
| 45 |
-
First, ensure image data is copied into `./data/image/dataset_name/All` and annotation data (`jsonl`) into `./data/gt/dataset_name`. Then, generate CLIP embeddings:
|
| 46 |
-
|
| 47 |
-
```shell
|
| 48 |
-
python3 src/utils/generate_CLIP_embedding_HF.py --dataset "FB"
|
| 49 |
-
python3 src/utils/generate_CLIP_embedding_HF.py --dataset "HarMeme"
|
| 50 |
-
```
|
| 51 |
-
|
| 52 |
-
#### Dataset Preparation - Generate ALIGN Embedding
|
| 53 |
-
|
| 54 |
-
Similarly, generate ALIGN embeddings:
|
| 55 |
-
|
| 56 |
-
```shell
|
| 57 |
-
python3 src/utils/generate_ALIGN_embedding_HF.py --dataset "FB"
|
| 58 |
-
python3 src/utils/generate_ALIGN_embedding_HF.py --dataset "HarMeme"
|
| 59 |
-
```
|
| 60 |
|
| 61 |
### Citation
|
| 62 |
|
| 63 |
If you use this dataset in your research, please kindly cite the corresponding paper:
|
| 64 |
|
| 65 |
```bibtex
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
@article{RAHMD2025Mei,
|
| 67 |
title={Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection},
|
| 68 |
url={http://arxiv.org/abs/2502.13061},
|
|
|
|
| 11 |
- vision-language
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# RGCL Dataset Resources
|
| 15 |
|
| 16 |
+
This repository contains the dataset for the paper [Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning](https://aclanthology.org/2024.acl-long.291).
|
| 17 |
|
| 18 |
+
This provides the sparse retrieval dataset for the RGCL paper.
|
| 19 |
|
| 20 |
For more details and related resources:
|
| 21 |
+
- **Paper**: [Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning](https://aclanthology.org/2024.acl-long.291)
|
| 22 |
- **Code (GitHub)**: https://github.com/JingbiaoMei/RGCL
|
| 23 |
- **Project Page**: https://rgclmm.github.io/
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
### Citation
|
| 27 |
|
| 28 |
If you use this dataset in your research, please kindly cite the corresponding paper:
|
| 29 |
|
| 30 |
```bibtex
|
| 31 |
+
@inproceedings{RGCL2024Mei,
|
| 32 |
+
title = "Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning",
|
| 33 |
+
author = "Mei, Jingbiao and
|
| 34 |
+
Chen, Jinghong and
|
| 35 |
+
Lin, Weizhe and
|
| 36 |
+
Byrne, Bill and
|
| 37 |
+
Tomalin, Marcus",
|
| 38 |
+
editor = "Ku, Lun-Wei and
|
| 39 |
+
Martins, Andre and
|
| 40 |
+
Srikumar, Vivek",
|
| 41 |
+
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
| 42 |
+
month = aug,
|
| 43 |
+
year = "2024",
|
| 44 |
+
address = "Bangkok, Thailand",
|
| 45 |
+
publisher = "Association for Computational Linguistics",
|
| 46 |
+
url = "https://aclanthology.org/2024.acl-long.291",
|
| 47 |
+
doi = "10.18653/v1/2024.acl-long.291",
|
| 48 |
+
pages = "5333--5347"
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
@article{RAHMD2025Mei,
|
| 52 |
title={Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection},
|
| 53 |
url={http://arxiv.org/abs/2502.13061},
|