Jingbiao commited on
Commit
608b32f
·
verified ·
1 Parent(s): b9aef89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -39
README.md CHANGED
@@ -11,58 +11,43 @@ tags:
11
  - vision-language
12
  ---
13
 
14
- # RA-HMD Dataset
15
 
16
- This repository contains the dataset for the paper [Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection](https://huggingface.co/papers/2502.13061).
17
 
18
- This dataset supports the development of robust automated detection systems for hateful memes. It is designed to enhance in-domain accuracy and cross-domain generalization for Large Multimodal Models (LMMs) while preserving their general vision-language capabilities. The data provided includes the original datasets and a converted format suitable for use with the [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) framework for stage 1 training of the RA-HMD model.
19
 
20
  For more details and related resources:
21
- - **Paper**: [Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection](https://huggingface.co/papers/2502.13061)
22
  - **Code (GitHub)**: https://github.com/JingbiaoMei/RGCL
23
  - **Project Page**: https://rgclmm.github.io/
24
 
25
- ### Sample Usage
26
-
27
- The following instructions are derived from the [GitHub repository](https://github.com/JingbiaoMei/RGCL) and show how to set up the environment and generate embeddings for the dataset.
28
-
29
- #### Setup Environment for RA-HMD
30
-
31
- ```bash
32
- git clone https://github.com/JingbiaoMei/RGCL.git
33
- cd RGCL/LLAMA-FACTORY
34
- conda create -n llamafact python=3.10
35
- conda activate llamafact
36
- pip install -e ".[torch,metrics,deepspeed,liger-kernel,bitsandbytes,qwen]"
37
- pip install torchmetrics wandb easydict
38
- pip install qwen_vl_utils torchvision
39
- # Install FAISS
40
- conda install -c pytorch -c nvidia faiss-gpu=1.7.4 mkl=2021 blas=1.0=mkl
41
- ```
42
-
43
- #### Dataset Preparation - Generate CLIP Embedding
44
-
45
- First, ensure image data is copied into `./data/image/dataset_name/All` and annotation data (`jsonl`) into `./data/gt/dataset_name`. Then, generate CLIP embeddings:
46
-
47
- ```shell
48
- python3 src/utils/generate_CLIP_embedding_HF.py --dataset "FB"
49
- python3 src/utils/generate_CLIP_embedding_HF.py --dataset "HarMeme"
50
- ```
51
-
52
- #### Dataset Preparation - Generate ALIGN Embedding
53
-
54
- Similarly, generate ALIGN embeddings:
55
-
56
- ```shell
57
- python3 src/utils/generate_ALIGN_embedding_HF.py --dataset "FB"
58
- python3 src/utils/generate_ALIGN_embedding_HF.py --dataset "HarMeme"
59
- ```
60
 
61
  ### Citation
62
 
63
  If you use this dataset in your research, please kindly cite the corresponding paper:
64
 
65
  ```bibtex
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  @article{RAHMD2025Mei,
67
  title={Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection},
68
  url={http://arxiv.org/abs/2502.13061},
 
11
  - vision-language
12
  ---
13
 
14
+ # RGCL Dataset Resources
15
 
16
+ This repository contains the dataset for the paper [Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning](https://aclanthology.org/2024.acl-long.291).
17
 
18
+ This provides the sparse retrieval dataset for the RGCL paper.
19
 
20
  For more details and related resources:
21
+ - **Paper**: [Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning](https://aclanthology.org/2024.acl-long.291)
22
  - **Code (GitHub)**: https://github.com/JingbiaoMei/RGCL
23
  - **Project Page**: https://rgclmm.github.io/
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ### Citation
27
 
28
  If you use this dataset in your research, please kindly cite the corresponding paper:
29
 
30
  ```bibtex
31
+ @inproceedings{RGCL2024Mei,
32
+ title = "Improving Hateful Meme Detection through Retrieval-Guided Contrastive Learning",
33
+ author = "Mei, Jingbiao and
34
+ Chen, Jinghong and
35
+ Lin, Weizhe and
36
+ Byrne, Bill and
37
+ Tomalin, Marcus",
38
+ editor = "Ku, Lun-Wei and
39
+ Martins, Andre and
40
+ Srikumar, Vivek",
41
+ booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
42
+ month = aug,
43
+ year = "2024",
44
+ address = "Bangkok, Thailand",
45
+ publisher = "Association for Computational Linguistics",
46
+ url = "https://aclanthology.org/2024.acl-long.291",
47
+ doi = "10.18653/v1/2024.acl-long.291",
48
+ pages = "5333--5347"
49
+ }
50
+
51
  @article{RAHMD2025Mei,
52
  title={Robust Adaptation of Large Multimodal Models for Retrieval Augmented Hateful Meme Detection},
53
  url={http://arxiv.org/abs/2502.13061},