Datasets:
Size:
10K<n<100K
ArXiv:
# This scripts generates a self-contained dataset relase that can be uploaded to the HF-Hub or distributed as an archive file | |
# Apart from pip-installable packages this file should be self-contained for reproducibility | |
import json | |
import re | |
import shutil | |
from pathlib import Path | |
import jinja2 | |
import pandas as pd | |
import uroman as ur | |
from unidecode import unidecode | |
from lnn.utils import load_audio | |
from tqdm.auto import tqdm | |
# Define some variables | |
NAME = "SpeechTaxi" | |
VERSION = "0.0.1" | |
HOMEPAGE = "github.com/LennartKeller" | |
CITATION = """ | |
@misc{keller2024speechtaximultilingualsemanticspeech, | |
title={SpeechTaxi: On Multilingual Semantic Speech Classification}, | |
author={Lennart Keller and Goran Glavaš}, | |
year={2024}, | |
eprint={2409.06372}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL}, | |
url={https://arxiv.org/abs/2409.06372}, | |
} | |
""".strip() | |
DESCRIPTION = "Multlingual Semantic Speech Classification" | |
SAVE_DIR = Path("/hdd/lennart/datasets") | |
# Define some arguments and 'constants' | |
# TODO think about ways to avoid having to do this | |
REWRITE_PATHS = ( | |
"/Volumes/SanDiskData/bible-audio-scraper-data/processed", | |
"/hdd/lennart/bible-audio-scraper-data/processed", | |
) | |
REWRITE_MASS_PATHS = ("/Volumes/SanDiskData/", "/hdd/lennart/") | |
ALIGNED_TABLES_DIR = Path("aligned_tables") | |
INCLUDE_MASS_LANGUAGES = False | |
MASS_LANGUAGES = ("eng", "rus", "spa", "ron", "eus", "fra") | |
SKIP_LANGUAGES = ("ron", "eus", "spa", "hau", "bdv", "nep", "ben") | |
SCRIPT_TEMPLATE = Path("SpeechTaxi.py.jinja") | |
if not INCLUDE_MASS_LANGUAGES: | |
SKIP_LANGUAGES += MASS_LANGUAGES | |
def rewrite_path(p: str | Path) -> str | Path: | |
if REWRITE_PATHS: | |
if isinstance(p, str): | |
p = p.replace(*REWRITE_PATHS) | |
p = Path(str(p).replace(*REWRITE_PATHS)) | |
return p | |
def rewrite_mass_path(p: str | Path) -> str | Path: | |
if REWRITE_MASS_PATHS: | |
if isinstance(p, str): | |
p = p.replace(*REWRITE_MASS_PATHS) | |
p = Path(str(p).replace(*REWRITE_MASS_PATHS)) | |
return p | |
# Define a 'filter_instances' function that holds the selection logic | |
# for selecting instances that shold end up in the final dataset | |
def filter_instances( | |
df: pd.DataFrame, table_file_path: str | Path = None | |
) -> pd.DataFrame: | |
df = df.copy() # Avoid warnings | |
# Some mass tables do not have them... | |
if "alignment_score" not in df.columns: | |
df["alignment_score"] = 1.0 | |
df = df.query("score == 1.0 and alignment_score >= 0.8") | |
return df | |
def render_script_template(**kwargs): | |
templateLoader = jinja2.FileSystemLoader( | |
searchpath=SCRIPT_TEMPLATE.parent.as_posix() | |
) | |
templateEnv = jinja2.Environment(loader=templateLoader) | |
template = templateEnv.get_template(SCRIPT_TEMPLATE.name) | |
return template.render(**kwargs) | |
# BEGIN LIB: | |
# Define libs that are used to create the dataset. | |
# Do not change stuff here unless you really want to. | |
BOOK_ABBREVIATIONS = { | |
"Matthew": "MAT", | |
"Mark": "MRK", | |
"Luke": "LUK", | |
"John": "JHN", | |
"Acts": "ACT", | |
"Romans": "ROM", | |
"Corinthians": "COR", # Can be used as "1COR" or "2COR" based on context | |
"Galatians": "GAL", | |
"Ephesians": "EPH", | |
"Philippians": "PHP", | |
"Colossians": "COL", | |
"Thess": "THS", # Can be used as "1THS" or "2THS" based on context | |
"Timothy": "TIM", # Can be used as "1TIM" or "2TIM" based on context | |
"Titus": "TIT", | |
"Philemon": "PHM", | |
"Hebrews": "HEB", | |
"James": "JAS", | |
"Peter": "PET", # Can be used as "1PET" or "2PET" based on context | |
"Jude": "JUD", | |
"Revelation": "REV", | |
} | |
BOOK_ABBREVIATIONS_FR = { | |
"Matthieu": "MAT", | |
"Marc": "MRK", | |
"Luc": "LUC", | |
"Jean": "JHN", | |
"Actes": "ACT", | |
"Romains": "ROM", | |
"Corinthiens": "COR", # Can be used as "1COR" or "2COR" based on context | |
"Galates": "GAL", | |
"Éphésiens": "EPH", | |
"Philippiens": "PHP", | |
"Colossiens": "COL", | |
"Thessaloniciens": "THS", # Can be used as "1THS" or "2THS" based on context | |
"Timothée": "TIM", # Can be used as "1TIM" or "2TIM" based on context | |
"Tite": "TIT", | |
"Philémon": "PHM", | |
"Hébreux": "HEB", | |
"Jacques": "JAC", | |
"Pierre": "PIE", # Can be used as "1PIE" or "2PIE" based on context | |
"Jude": "JUD", | |
"Apocalypse": "APO", | |
} | |
BOOK_ABBREVIATIONS |= { | |
unidecode(k): unidecode(v) for k, v in BOOK_ABBREVIATIONS_FR.items() | |
} | |
MASS_LANGUAGE_IDS = [ | |
"FRNTLSN2DA", | |
"ENGESVN1DA", | |
"RUSS76N2DA", | |
"SPNBDAN1DA", | |
"EUSEABN1DA", | |
"RONDCVN1DA", | |
] | |
def parse_reference_from_mass_file(filename: str | Path, language_id: str = ""): | |
filename = Path(filename).name | |
book_num, rest = filename.split("___", 1) | |
book_num = int(book_num.replace("B", "")) | |
chapter_num, rest = rest.split("_", 1) | |
chapter_num = int(chapter_num) | |
if language_id: | |
rest = rest.replace(language_id, "") | |
else: | |
# rest = "_".join(p for p in rest.split("_") if not p.endswith("DA")) | |
for language_id in MASS_LANGUAGE_IDS: | |
rest = rest.replace(language_id, "") | |
rest = rest.replace("_one_channel.wav", "") | |
book_ref, verse_ref = re.split(r"_+", rest, 1) | |
book_num = "" | |
if book_ref[0].isdigit(): | |
book_num = book_ref[0] | |
book_ref = book_ref[1:] | |
try: | |
book_ref = BOOK_ABBREVIATIONS[book_ref] | |
except KeyError as e: | |
print(book_ref) | |
print(filename) | |
raise e | |
if book_num: | |
book_ref = book_num + book_ref | |
verse_num = int(verse_ref.split("_")[-1]) | |
complete_ref = f"{book_ref}.{chapter_num}.{verse_num}" | |
return complete_ref | |
def copy_self(dst: str | Path) -> None: | |
dst = Path(dst) | |
path_to_self = Path(__file__) | |
dst = dst / path_to_self.name | |
dst.write_text(path_to_self.read_text()) | |
def copy_bible_scrape_audio(file: str | Path, root: str | Path) -> Path: | |
file, root = map(Path, (file, root)) | |
copied_file = ( | |
root / file.parts[-4] / file.parts[-3] / file.parts[-2] / file.parts[-1] | |
) | |
copied_file.parent.mkdir(exist_ok=True, parents=True) | |
shutil.copy(file, copied_file) | |
return copied_file | |
def copy_mass_audio(file: str | Path, root: str | Path) -> Path: | |
file, root = map(Path, (file, root)) | |
copied_file = root / file.parts[-2] / file.parts[-1] | |
copied_file.parent.mkdir(exist_ok=True, parents=True) | |
shutil.copy(file, copied_file) | |
return copied_file | |
uroman = ur.Uroman() | |
def read_mass_instance(audio_file: str | Path) -> dict: | |
audio_file = Path(audio_file) | |
audio_file = rewrite_path(audio_file) | |
if not audio_file.exists(): | |
raise ValueError(f"Audio file {audio_file} does not exist.") | |
verse_ref = parse_reference_from_mass_file(audio_file) | |
transcription_file = ( | |
audio_file.parent / f"{audio_file.stem.removesuffix('_one_channel')}.txt" | |
) | |
transcription = transcription_file.read_text() | |
machine_generated_transcriptions = {} | |
machine_generated_transcription_files = audio_file.parent.glob( | |
f"{audio_file.stem}-*-transcript.txt" | |
) | |
for machine_generated_transcription_file in machine_generated_transcription_files: | |
# Get transcription key | |
key = machine_generated_transcription_file.stem.split("_one_channel-")[-1] | |
key = key.removesuffix("-transcript") | |
# print(audio_file, "|", machine_generated_transcription_file, "|", key) | |
machine_generated_transcriptions[f"transcription_{key}"] = ( | |
machine_generated_transcription_file.read_text() | |
) | |
data = { | |
"verse_ref": verse_ref, | |
"transcription": transcription, | |
"transcription_romanized": uroman.romanize_string(transcription), | |
} | machine_generated_transcriptions | |
return data | |
def read_bible_scrape_instance(audio_file: str | Path) -> dict: | |
""" | |
Given the file to a verse this function loads all available metadata from disk. | |
And ensure that the audio files exists... | |
""" | |
audio_file = Path(audio_file) | |
audio_file = rewrite_path(audio_file) | |
if not audio_file.exists(): | |
raise ValueError(f"Audio file {audio_file} does not exist.") | |
# 1. Load all avaiable transcriptions | |
transcription_file = audio_file.with_suffix(".json") | |
transcriptions = json.loads(transcription_file.read_text()) | |
# Filter to only texts | |
try: | |
verse_ref = transcriptions.pop("verse_ref") | |
transcriptions = { | |
bible_id: content["content"] for bible_id, content in transcriptions.items() | |
} | |
except Exception as e: | |
print(transcriptions) | |
print(e) | |
# 2. Look for audio alignement scores | |
alignment_file = audio_file.parent / f"{audio_file.stem}-alignment-scores.json" | |
alignment_scores = json.loads(alignment_file.read_text()) | |
# 3. Select the transcription with best audio alignment score | |
best_bible_id = max(alignment_scores.items(), key=lambda x: x[-1])[0] | |
transcription = transcriptions[str(best_bible_id)] | |
# 4. Load all available machine generated transcriptions | |
machine_generated_transcriptions = {} | |
machine_generated_transcription_files = audio_file.parent.glob( | |
f"{audio_file.stem}-*.txt" | |
) | |
for machine_generated_transcription_file in machine_generated_transcription_files: | |
# Get transcription key | |
key = ( | |
machine_generated_transcription_file.stem.removeprefix(audio_file.stem) | |
.removesuffix("-transcript") | |
.strip("-") | |
) | |
# if key.endswith("mms"): | |
# continue | |
# print(audio_file, "|", machine_generated_transcription_file, "|", key) | |
machine_generated_transcriptions[f"transcription_{key}"] = ( | |
machine_generated_transcription_file.read_text() | |
) | |
data = { | |
"verse_ref": verse_ref, | |
"transcription": transcription, | |
"transcription_romanized": uroman.romanize_string(transcription), | |
} | machine_generated_transcriptions | |
return data | |
def is_audio_valid(audio_path: str | Path): | |
audio_path = Path(audio_path) | |
if not audio_path.exists(): | |
return False | |
try: | |
wv, sr = load_audio(audio_path, return_tensor="torch") | |
wv = wv[0].reshape(-1) | |
except Exception: | |
return False | |
# We need *at least* one second of audio | |
return wv.numel() >= sr | |
# Main logic | |
if __name__ == "__main__": | |
dataset_root = SAVE_DIR / NAME | |
# Setup the output directory (-ies) | |
if dataset_root.exists(): | |
raise ValueError( | |
f"Dataset-Root-Directory {dataset_root} already exists, please remove manually to continue!" | |
) | |
print(f"Creating dataset release in {dataset_root}") | |
dataset_root.mkdir(parents=True) | |
data_dir = dataset_root / "data" | |
data_dir.mkdir(parents=True) | |
table_dir = dataset_root / "tables" | |
table_dir.mkdir(parents=True) | |
# Copy this script to dataset dir for reproducibility | |
copy_self(dataset_root) | |
# Create language datasets and copy the data to the dataset directory | |
# Load and filter alignment tables | |
language_tables = sorted( | |
[f for f in ALIGNED_TABLES_DIR.glob("*.tsv") if f.stem not in SKIP_LANGUAGES] | |
) | |
# Write code file | |
success_languages = [] | |
pbar = tqdm(language_tables, desc="Creating dataset...") | |
invalid_counter = 0 | |
for alignment_table in pbar: | |
df = pd.read_table(alignment_table) | |
try: | |
df = filter_instances(df, alignment_table) | |
except Exception as e: | |
print(alignment_table) | |
raise e | |
if not len(df): | |
continue | |
success_languages.append(alignment_table) | |
final_table_data = [] | |
for _, row in df.iterrows(): | |
if alignment_table.stem not in MASS_LANGUAGES: | |
audio_file = rewrite_path(Path(row["audio_path"])) | |
if not is_audio_valid(audio_file): | |
invalid_counter += 1 | |
continue | |
copied_audio_file = copy_bible_scrape_audio(audio_file, root=data_dir) | |
english_text = row["en_text"] | |
try: | |
data = read_bible_scrape_instance(audio_file) | |
except Exception as e: | |
print("Error reading file", audio_file) | |
print(e) | |
print("_" * 30) | |
continue | |
# Files that can't be read have zero alignment scores anyways so in most cases this isn't an issue | |
data = ( | |
{"verse_ref": data.pop("verse_ref")} | |
| {"text_en": english_text} | |
| {"split": row["split"], "label": row["label"]} | |
| data | |
| {"audio": copied_audio_file.relative_to(data_dir).as_posix()} | |
) | |
final_table_data.append(data) | |
elif INCLUDE_MASS_LANGUAGES: | |
audio_file = rewrite_mass_path(Path(row["audio_path"])) | |
if not is_audio_valid(audio_file): | |
invalid_counter += 1 | |
continue | |
copied_audio_file = copy_mass_audio(audio_file, root=data_dir) | |
try: | |
data = read_mass_instance(audio_file) | |
except Exception as e: | |
print("Error reading file", audio_file) | |
print(e) | |
print("_" * 30) | |
continue | |
# Files that can't be read have zero alignment scores anyways so in most cases this isn't an issue | |
data = data | { | |
"split": row["split"], | |
"label": row["label"], | |
"text_en": row["en_text"], | |
"audio": copied_audio_file.relative_to(data_dir).as_posix(), | |
} | |
final_table_data.append(data) | |
pbar.set_description( | |
f"{str(alignment_table)} | Total invalid: {invalid_counter}" | |
) | |
final_table = pd.DataFrame.from_records(final_table_data) | |
final_table.to_csv(table_dir / alignment_table.name, index=False, sep="\t") | |
# Now render dataset loading script and write to dataset dir | |
code_file = dataset_root / f"{NAME}.py" | |
code_file_content = render_script_template( | |
languages=[f.stem for f in success_languages], | |
version=VERSION, | |
homepage=HOMEPAGE, | |
citation=CITATION, | |
) | |
code_file.write_text(code_file_content) | |
# Zip data and tables dir | |
shutil.make_archive(dataset_root / "tables", "zip", table_dir) | |
shutil.rmtree(table_dir) | |
shutil.make_archive(dataset_root / "data", "zip", data_dir) | |
shutil.rmtree(data_dir) | |