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Chapter 13 – Model-Based Navigation Systems
13.1 Sensors for Marine Craft
13.2 Wave Filtering
13.3 Fixed-Gain Observer Design
13.4 Kalman Filter Design
13.5 Passive Observer Design

Conventional ship and underwater vehicle control systems are implemented with a model-
based state estimator for processing of the sensor and navigation data. 

The quality of the raw measurements (GNSS, accelerometers, gyros, compass etc.) are usually 
monitored and handled by a signal processing unit or a program for quality check and wild-
point removal. The processed measurements are transmitted to the sensor and navigation 
computer which uses a state estimator capable of noise filtering, prediction and reconstruction 
of unmeasured states.

The most advanced navigaCon system for marine applicaCons is the Iner%al Naviga%on System (INS); see Chapter 14.

Sensonor STIM300 IMU
https://www.sensonor.com
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Sensors for marine craft:
• Understand the principles for GNSS position, GNSS heading, magnetic compass and 

gyrocompass
• Understand what we mean with wave filtering and when to apply a wave filter algorithm
• Be able to estimate the wave encounter frequency of a marine craft

Model-based state estimation:
• Understand the principles and design methods for fixed-gain Luenberger observers, Kalman 

filters and passive observers
• Be able to model marine craft under DP and heading control, and include dynamic models of the 

sensor and navigation systems using realistic measurement noise 
• Be able to design Kalman filters for DP and heading autopilots with wave filtering capabilities
• Be able to design passive observers for DP and heading autopilots with wave filtering capabilities

Chapter Goals
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Chapter 13 – Model-Based Navigation Systems

The drawback of the model-based approach to aided INS is model uncertainty when implemented in a KF. One obvious 
advantage is that addiConal sensors such as the inerCal measurement unit (IMU) are avoided. Another benefit is that the 
mathemaCcal model can be used for fault detecCon and isolaCon, as well as fault recovery. 

The marine craO equaCons of moCon when implemented in a KF is in fact a predictor, which can be used to predict future 
moCons of the craO when sensors fails or have outages for shorter periods of Cme.

In a model-based KF, the craft position, velocity and 
attitude are states in the estimator, while linear 
acceleration and angular rates are generated using 
a mathematical model (Chapter 13).

Alternatively, the model can be avoided by using 
accelerometers and angular rate sensor (ARS) 
measurements as inputs and integrate the 
kinematic equations (Chapter 14) . This is an 
Inertial Navigation System (INS).
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Navigation is the science of directing a craft by determining its position/attitude, course and distance traveled. In some cases, 
velocity and acceleration are determined as well. Navigation is derived from the Latin navis, “ship”, and agere, “to drive”.
It originally denoted the art of ship driving, including steering and setting the sails. 

Chapter 13 – Model-Based Navigation Systems

The sensor and navigation 
system is usually implemented 
as an optimal state estimator 
(Kalman filter) using GNSS 
measurements combined with 
motion sensors such as 
accelerometers and attitude 
rate sensors (ARS). 
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13.1  Sensors for Marine Cra0
The primary measurement systems for model-based navigation filters when used onboard a surface craft are global 
satellite navigation systems (GNSS) and heading angle sensors. More specific,

• GNSS position   
• GNSS heading  
• Magnetic compass 
• Gyrocompass 

The position and heading angle measurements are used as aiding – to prevent drift when integrating the equations 
of motion.  Sometimes and inertial measurement unit (IMU) is included in the state estimator as optional 
measurements.
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13.1.1 GNSS Position
GNSS position is the primary sensor for terrestrial navigation. The four commercial systems are:

• NAVSTAR Global Positioning System (GPS): The United States NAVSTAR GPS was started by the 
U. S. Department of Defense in 1973, with the first prototype spacecraft launched in 1978 and 
the full constellation of 24 satellites operational in 1993.

• GLONASS: From Russian GLObal’naya NAvigatsionnaya Sputnikovaya Sistema. The development 
of the Russian GLONASS satellite navigation system began in the Soviet Union in 1976 and the 
constellation was completed in 1995. After a decline in capacity in the 90s, GLONASS was 
restored. Full orbital constellation of 24 satellites was achieved in 2011, enabling full global 
coverage.

• Galileo: The European Union’s Galileo positioning system went live in 2016. It is an independent 
civilian positioning system designed by European nations so they do not have to rely on GPS, 
GLONASS or BeiDou, which could be disabled or degraded by their operators at any time.

• BeiDou: Chinese for the Big Dipper or the North Star. In 2015, China launched the third 
generation BeiDou (BeiDou-3) for global navigation. BeiDou-3 consists of 35 satellites and the 
system has provided global services since 2020.

Differential and augmented GNSS: The main idea of a differential GNSS system is that a fixed receiver located, for example, 
on shore with a known position is used to calculate the GNSS position errors. The position errors are then transmitted
to the GNSS receiver on board the ship and used as corrections to the actual ship position. In a differential GNSS the 
horizontal positioning errors are squeezed down to less than 1 m (typical accuracy of a ship positioning system today).
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13.1.2 GNSS Heading

Given the positions of the satellite, the position of the 
antenna, and the phase difference, the orientation of 
the two antennas can be computed. 

The accuracy can be further improved by using three 
antennas in a triangle to get three separate readings 
with respect to each satellite. It is also beneficial to 
increase the distance between the antennas. 

The GNSS heading solution is not subject to magnetic 
declination, but it will be sensitive to ionospheric 
disturbances and multipath effects.

The GNSS system can be used to determine the heading angle, even though it was not designed for this purpose. 

A “GNSS compass” uses a pair of antennas separated by 50 cm or more to detect the phase difference in the carrier 
signal from a particular GNSS satellite. 

The Otter USV manufactured by www.maritimerobotics.com

http://www.maritimerobotics.com/
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The heading angle is the sum of the the magnetic heading measurement ym and the declination angle d  given by

The declination angle for a given longitude l and latitude µ can be calculated using the World Magnetic Model (WMM), 
which is a joint project by the United States’ National Geospatial-Intelligence Agency (NGA) and the United Kingdom’s 
Defence Geographic Centre (DGC); see next slide. The WMM magnetic model comes with C software and executables.

Sensitivity to magnetic variations and declination cause problems in ship navigation. These problems were overcome 
after the introduction of the gyroscopic compass.

13.1.3 Magnetic Compass
A magnetic compass is in fact an extremely simple device (as opposed to a gyroscopic 
compass). It consists of a small, lightweight magnet balanced on a nearly frictionless 
pivot point. The magnet is generally called a needle.

The magnetic field inside the Earth has its south end at the North Pole and opposite. 
Hence, the North end of the compass needle points towards the North Pole (opposite 
magnets attract). The magnetic field of the Earth is, however, not perfectly aligned along 
the Earth’s rotational axis. It is skewed slightly off center. This skew or bias is called the 
declination and it must be compensated for. Wikimedia Commons 

https://commons.wikimedia.org/wiki/File:Kompas_Sofia.jpg

https://commons.wikimedia.org/wiki/File:Kompas_Sofia.jpg
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Magnetic field declination d according to the US/UK World Magnetic Model (WMM)
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13.1.4 Gyrocompass
The large variaCons in the magneCc character of ships caused by electrical 
machinery and weapon systems make the construcCon of accurate 
declinaCon or deviaCon tables very difficult. 

In parallel works, Dr H. Anschütz-Kaempfe of Germany and Elmer Sperry of 
the USA worked on a pracCcal applicaCon of Hopkins’ gyroscope. In 1908 
Anschütz patented the first North-seeking gyrocompass, while Elmer Sperry 
was granted a patent for his ballisCc compass, which includes verCcal 
damping, three years later.

Elmer A. Sperry, Sr.
(1860-1930)

Hermann Anschütz-Kaempfe
(1872-1931)

Today gyroscopic compasses are widely used for navigation, because they 
have significant advantages over magnetic compasses. In particular they 
are unaffected by ferromagnetic materials, such as in a ship’s steel hull, 
which distort the magnetic field. Another important aspect is that they are 
not affected by electromagnetic fields, which are generated by rotating 
machinery and engines moving electric charges. 

Unfortunately, a gyrocompass is quite expensive, which limits their use to 
large ships and safety-critical vehicle systems. Smaller vehicles usually 
navigate by using magnetic compasses, course over ground or GNSS 
heading.

Wikipedia commons:
https://commons.wikimedia.org/wiki/File:Elmer_Ambrose_Sperry.jpg
https://commons.wikimedia.org/wiki/File:Hermann_Anschütz-Kaempfe.jpg

Sperry MK37 VT Digital Gyrocompass 

Kongsberg gyrocompass 
and INS MGC R3

https://commons.wikimedia.org/wiki/File:Elmer_Ambrose_Sperry.jpg
https://commons.wikimedia.org/wiki/File:Hermann_Ansch%C3%BCtz-Kaempfe.jpg
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13.2  Wave Filtering
• Wave filtering is one of the most important issues to consider when designing ship 

control systems. 
• It is important that only the slowly-varying disturbances are counteracted by the 

steering and propulsion systems; the oscillatory wave-frequency (WF) motion due to 
the waves (1st-order wave-induced forces) should be prevented from entering the 
feedback loop (Balchen 1976). 

Definition:  Wave Filtering
Wave filtering can be defined as the reconstruction of 
the low-frequency (LF) motion components from wave-
induced noisy measurements of position, heading and in 
some cases velocity and acceleration by means of a 
state estimator or a filter.

Remark: If a state estimator such as the Kalman filter is 
applied, estimates of the WF motion components  (first-
order wave-induced forces)  can also be computed.

Total motion = LF motion + WF motion
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0.05 Hz ! f0 ! 0.2 Hz   #   

For wave periods in the interval 5s < T₀ < 20s, the dominating wave frequency (modal frequency) f₀ of a wave spectrum 
will be in the range

13.2.1 Low-Pass Filtering

The circular frequency ω₀ = 2π f₀ corresponding 
to periods T₀ > 5s is

!0 ! 1.3 rad/s   #   

Waves can be accurately described by 1st- and 2nd-order linear wave theory:

• 1st-order wave-induced forces (WF forces) produce large oscillations about a mean wave force. 
WF forces are represented as a wave spectrum.
Compensated for by using wave filtering in the state estimator 

• 2nd-order wave-induced forces or mean wave (drift) forces are slowly varying forces. 
Compensated for by using integral action in the control law

S( )w

Swell
and tidal
waves

Developing
sea

wω₀
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13.2.1 Low-Pass Filtering
A feedback control system will typically move the 
bandwidth ωb of the vessel up to 0.1 rad/s which still 
is below the wave spectrum. 

The wave disturbances will typically be inside the 
bandwidth of the servos and actuators of the vessel. 
Hence, the wave disturbances must be filtered out 
before feedback is applied in order to avoid 
unnecessary control action. 

LF vessel motion

WF motion

For a large oil tanker, the crossover frequency ωc
can be as low as a 0.01 rad/s, while smaller vessels 
like cargo ships and the Mariner class vessel, are 
close to 0.05 rad/s.

!0!c
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13.2.1 Low-Pass Filtering
For a ship moving at forward speed U > 0, there will be a shift in the wave 
spectrum peak frequency ω0.

The shifted frequency is referred to as the frequency of encounter ωe and it 
depends on ship speed U, modal wave frequency ω₀ and wave direction β
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13.2.1 Low-Pass Filtering

LP and notch filters in series with the control system

For sea states where the encounter frequency ωe is much higher than the bandwidth ωb of the control system,

a LP-filter can be used to filter out the 1st-order wave-induced forces. This is typically the case for large vessels 
such as oil tankers.
For smaller vessels, a LP filter in cascade with a notch filter is quite common to use.

!b ! !e
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13.2.1 Low-Pass Filtering
Autopilot measurement equation

where 

y(s) is the compass measurement
w(s) is zero-mean Gaussian white noise

is the rudder input. 
is the LF motion

is the WF motion

Linear theory:

Consequently, the feedback control law         should be a function of         and not y(s) in 
order to avoid 1st-order wave-induced rudder motions.

!!s"
!!s"
!w!s" time

0 50 100 150

0

Total motion, LF + WF

LF motion

WF motion

!!s" !!s"
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13.2.1 Low-Pass Filtering
A first-order low-pass filter with time constant Tf can be designed according to:

This filter will suppress disturbances over the frequency 1/Tf. 
This criterion is hard to satisfy for smaller vessels.

Higher-order low-pass filters can be designed by using a Butterworth filter:

where p(s) is found by 
solving the Butterworth
polynomial:

hlp!s" ! 1
1"Tfs

!b # 1
Tf

# !e (rad/s"

hlp!s" ! 1
p!s"

p!s"p!!s" ! 1 " !s/j!f"2n

!n ! 1"hlp!s" ! 1
1 " s/! f

!n ! 2"hlp!s" !
!f2

s 2 " 2"!fs " ! f2
; " ! sin!45o"

!n ! 3"hlp!s" !
!f
2

s 2 " 2"!fs " ! f2
# 1
1 " s/!f

; " ! sin!30o"

!n ! 4"hlp!s" ! !
i!1

2 !f
2

s 2 " 2"i! fs " !f2
; "1 ! sin!22. 5o", "2 ! sin!67. 5o"
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13.2.1 Low-Pass Filtering

A higher-order low-pass filter implies better disturbance suppression to the price of additional phase lag

!0!b

low-pass
filter

bandwidth of
closed-loop
system

wave
disturbance
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where

For a vessel moving at forward 
speed U the optimal notch 
frequency will be:

but… notch filtering also introduces 
additional phase lag!

therefore… use Kalman filtering or a 
linear/nonlinear observer

13.2.2 Cascaded Low-Pass and Notch Filtering
For smaller craft the bandwidth of the controller can be close to or within the range of the wave spectrum. 
This problem can be handled by using a low-pass filter in cascade with a notch filter:

!! !s" " hlp!s"hn!s"y!s"

hn!s" ! s2"2!"ns""n2

!s""n"2

!n ! !e

!n

frequency range of 
wave disturbance
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13.2.3 Wave-Frequency Estimation
FFT for computation of the heave-response spectrum
Unfortunately, creating a FFT frequency spectrum takes 
time and it results in back-dated information when 
estimating the time-varying wave encounter frequency. 
This is due to the moving window necessary for 
applying the FFT algorithm. 

However, it is possible to estimate we if speed and 
heading are constant for a period of time (typically 30 
minutes). The best results are obtained by using the 
heave response, which can be logged by using an 
accelerometer. Good results are also obtained for pitch 
angle response data.
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13.2.3 Wave-Frequency Estimation

Matlab example file ExFFT.m in the MSS toolbox

The FFT applied to a moving window of data 
generated by using the following signals:

Wave spectrum

Sinusoidal wave        az = A cos(we t)

The wave encounter frequency we = 0.8 rad/s is 
observed as the peak frequency of both data sets.
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13.2.3 Wave-Frequency Estimation
Nonlinear observer for online estimation of the wave encounter frequency

Adaptive gain-switching algorithm
Low-pass filtered gain

Amplitude estimator

D. J. Belleter, R. Galeazzi and T. I. Fossen. Experimental Verification of a Globally Exponentially Stable Nonlinear Wave Encounter Frequency 
Estimator. Ocean Engineering, Elsevier, Volume 97, No. 15 March 2015, pp. 48–56.

Regular wave with unknown frequency
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13.2.3 Wave-Frequency Estimation

D. J. Belleter, R. Galeazzi and T. I. Fossen. Experimental Verification of a Globally Exponentially Stable Nonlinear Wave Encounter Frequency 
Estimator. Ocean Engineering, Elsevier, Volume 97, No. 15 March 2015, pp. 48–56.
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The simplest state estimator is designed as a fixed-gain observer where the goal of the observer is to reconstruct the 
unmeasured state vector x from the measurements u and y of a dynamical system.

Observers are derived from deterministic models, which neglects process w and measurement e noise. 
However, an observer will still work when adding Gaussian white noise to the system if the gains are tuned properly.

State estimators and observers can only be designed for systems that are observable!

13.3 Fixed-Gain Observer Design
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13.3.1 Observability
Definition (Observability in LTI Systems)
Consider the linear time-invariant system

The pair (A, C) is observable if and only if the 
observability matrix

has full column rank or (at least) a left inverse exists.

Definition (Observability in LTV Systems)
Consider the linear time-varying system

The pair (A(t), C(t)) is observable if and only if the is 
observable at time t0 if and only if there exists a finite 
t1 > t0 such that the n x n the Observability Gramian

is nonsingular when             I  is the state transition 
matrix of the system
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13.3.2 Luenberger Observer

LTI system

An observer copying the dynamics is 

where K is an observer gain matrix to be constructed such that

Error dynamics

Asymptotic convergence of                             to zero can be
obtained for a constant K if the pair (A, C) is observable.

InjecCon term

Observer goal: reconstruct the unmeasured state vector x from the measurements u and y
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Nomoto Ship Model Exposed to Wind, Waves and Ocean Currents
Let a 1st-order Nomoto model describe the LF motion of a ship:

where b is the rudder offset (counteracts slowly-varying moments on the ship due to wave drift 
forces, LF wind and ocean currents).  A linear wave model can be used to model the wave response

The process noise terms, w1,w2, and w3 are modeled as white noise processes. 
The compass measurement equation can be expressed by the sum

where v represents zero-mean Gaussian measurement noise. 
Notice that the yaw rate r nor the wave states xw and yw are measured.

13.3.3 Case Study: Luenberger Observer for Heading 
Autopilot

h!s" ! Kws
s2"2!"0s""0

2
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13.3.3 Case Study: Luenberger Observer for Heading 
Autopilot
Nomoto Ship Model Exposed to Wind, Waves and Ocean Currents
State-space model:

Is the ship model exposed to environmental forces observable?
This implies that yaw rate, bias and waves states can be estimated using a single compass measurement!  
à see example on next page

YES
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13.3.3 Case Study: Luenberger Observer for Heading 
Autopilot
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13.4 Kalman Filter Design

• KF is an alternaCve soluCon to the pole-placement technique is to apply the discrete-Cme 
Kalman filter (Kalman 1960) to compute the esCmator gain matrix K. 

• Kalman filtering (or op%mal state es%ma%on in sense of minimum variance) allows the user to 
esCmate the state x of a dynamic system from a noise-contaminated input-output pair (u, y).

w is a zero-mean Gaussian white noise process with 
covariance matrix Q = QT > 0

e is a zero-mean Gaussian white noise process with 
covariance matrix R = RT > 0

If the system is observable, the state vector x can be 
reconstructed recursively through the measurement 
vector y and the control input vector u

Since 1960 the discrete-time Kalman filter (KF), and nonlinear extensions thereof, has been used to provide integrated 
navigation solutions based on different types of measurements. 

The discrete-time KF is used in millions of applications, and it is the core algorithm of all modern navigation systems.
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13.4.1 Discrete-Time Kalman Filter
The KF is implemented in discrete time since the measurements are transmitted at different frequencies. The discrete-
time KF (Kalman 1960) is optimal for computer simulations and practical computations.  Hence, we will not study the 
contrious-time KF.

Discrete-time state-space model

LTI systems where A-1 exists (Appendix B1.1)                            General solution avoiding A-1
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13.4.1 Discrete-Time Kalman Filter

Rudolf E. Kálmán (1930 – 2016) 
Hungarian-American electrical 
engineer, mathematician and inventor. 

Wikimedia commons:
https://commons.wikimedia.org/wiki/File:Rudolf_Kalman.jpg

Oct. 6, 2009 - Source: Alex Wong/GeUy Images North America

https://commons.wikimedia.org/wiki/File:Rudolf_Kalman.jpg
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13.4.1 Discrete-Time Kalman Filter

Kalman filter loop
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13.4.2 Discrete-Time Extended Kalman Filter
The Kalman filter can also be applied to nonlinear systems with non-additive input and process noise

If the system is observable, the state vector can be estimated using the discrete-time EKF, which is based on the  
discrete-time predictor is

Disadvantages
• The linear KF is an optimal estimator and it is easy to establish stability and convergence properties thanks to linear system 

theory. Unfortunately, optimality is lost when applying the EKF since it relays on linearization.
• f the initial estimate of the state is wrong, or if the process is modeled incorrectly, the EKF may quickly diverge, owing to its 

linearization. 
• Another problem with the EKF is that the estimated covariance matrix tends to underestimate the true covariance matrix 

and therefore risks becoming inconsistent in the statistical sense. Care should also be taken with respect to covariance 
blow-up and instability. 

However, the EKF gives excellent performance in most navigation systems at it is the de facto standard in aided INS

Euler’s method
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13.4.2 Discrete-Time Extended Kalman Filter
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13.4.3 Modification for Euler Angles to Avoid 
Discontinuous Jumps
Care must be taken when implementing attitude controllers and state estimators using Euler angles since the roll, pitch and 
yaw angles are confined to the interval [0, 2p) or [-p,  p), also known as the 1-sphere or the topological space S1

corresponding to a circle in the plane.

When implementing a heading control system for a marine craft, it is crucial that the angle difference is mapped to the 
smallest signed angle (SSA) between the current heading and the reference .

To illustrate why, consider a craft with an actual heading of zero degrees and a heading setpoint of 355 degrees.
A naive controller implementation would calculate a heading error of -355 degrees, thus commanding a near full rotation, 
going clockwise, although the setpoint is only 5 degrees away in the opposite direction. 
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13.4.3 Modification for Euler Angles to Avoid 
Discontinuous Jumps
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13.4.3 Modification for Euler Angles to Avoid 
Discontinuous Jumps
PD control using the Smallest Signed Angle to avoid Discontinuous Jumps
Consider the yaw angle dynamics

Error dynamics

The equilibrium point                               is exponentially stable and globally attractive for the the entire domain
Proof: see Coates et al. (2021). 

Remark:  

ssa modified yaw angle error
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13.4.3 Modification for Euler Angles to Avoid 
Discontinuous Jumps
State Estimation using the Smallest Signed Angle to avoid Discontinuous Jumps
Consider the discrete-time Nomoto model for a marine craft

State estimator
ssa modified injecCon terms
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13.4.4 Modification for Asynchronous Measurement Data
Synchronous Measurements
When implementing a discrete-time KF it is practical to choose the sampling frequency

of the system model equal to the measurement frequency such that the states can be propagated from time tk

to time tk+1 = h tk where h is the sampling time. 

Asynchronous Measurements
In embedded computer systems the measurements can be received at different frequencies than the sampling 
frequency of the system. 

• GNSS measurements are typically sampled at fgnss = 1 Hz

• Inertial Sensors (accelerometers and gyros) can be sampled at a user specified frequency fimu >>  fgnss

(MEMS-based IMUs can operate at frequencies much larger than 1000 Hz)

gnss gnss gnss

IMU (fast)
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13.4.4 Modification for Asynchronous Measurement Data

Assume that the sampling frequency is chosen equal to 
the frequency of the fastest measurement frequency

Let the integer Z denote the ratio between the sampling 
frequency and the slower GNSS measurement frequency

It is practical to choose Z as an integer such that the slow 
measurement appear each Z time in the KF logical loop.

In addition, it is necessary to set the corrector 
equations equal to the predicted values when there 
are no measurement (see pseudocode on next page)
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13.4.4 Modification for Asynchronous Measurement Data

ELSE, there are no GNSS measurements and 
the  corrector equaCons are set equal to the 
predicted values

IF a slow GNSS position measurement (1 Hz) 
is received, compute the Kalman gain and 
run the corrector

Kalman filter runs at a sampling frequency of 100 Hz

IMU measurements are received at 100 Hz
GNSS measurements are received at 1 Hz
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13.4.5 Case Study: KF Design for Heading Autopilots

State-space model: 

The main sensor components for a heading-controlled ship are: 
• MagneCc and/or gyroscopic compasses measuring the yaw angle
• Autude rate sensor (ARS) measuring the yaw rate 

In many commercial systems only the compass is used for feedback control since the yaw rate can be esCmated quite 
well by a state esCmator.
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13.4.5 Case Study: KF Design for Heading Autopilots
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True LF heading ψ and 
estimate.

True LF heading rate r
and estimate.

True WF component of 
the heading ψw and 
estimate.

13.4.5 Case Study: KF Design for Heading Autopilots
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MSS Simulink: demoKalmanWavefilterAutop.slx
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13.4.6 Case Study: KF for Dynamic Positioning Systems
WF model

LTV state-space model (LF + WF)

X

Y

Z

u ( )surge

r ( )yaw

v ( )sway

( )heavew

( )rollp

( )pitchq

Known R matrix
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13.4.6 Case Study: KF for Dynamic Positioning Systems
Model matrices

Discrete-time state-space model (Euler’s method)
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13.4.6 Case Study: KF for Dynamic Positioning Systems

ssa modification for DP
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13.5 Passive Observer Design
The drawbacks of the Kalman filter for DP applicaUons are:

• It is difficult and Cme-consuming to tune the KF (stochasCc system with 15 states and 120 covariance equaCons). 

The main reason for this is that the numerous covariance tuning parameters may be difficult to relate to physical 
quanCCes. This results in an ad hoc tuning procedure for the process covariance matrix Q while the measurement 
covariance matrix R usually is well defined in terms of sensor specificaCons. only local results

• Another drawback with KF-based design techniques is that a relaCvely large number of parameters must be 
determined through experimental tesCng of the craO

This moCvated the research of a nonlinear passivity-based observer, since passivity arguments simplify the tuning 
procedure significantly (Fossen and Strand 1999). Hence, the Cme needed for sea trials and tuning can be drasCcally 
reduced. The nonlinear passive observer, guarantees convergence of all esCmaCon errors (including the bias terms) to 
zero. Hence, only one set of observer gains is needed to cover the whole state space. In addiCon, the number of 
observer tuning parameters is significantly reduced and the wave filter parameters are directly coupled to the 
dominaCng wave frequency. 

Reference:  
Fossen, T. I. and J. P. Strand (1999). Passive Nonlinear Observer Design for Ships Using Lyapunov Methods: Experimental Results with a 
Supply Vessel, Automa0ca, Vol. 35, No. 1, pp. 3-16, January 1999.
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The matrix                                                     of bias time constants is 
included as additional tuning parameters to obtain passivity X

Y

Z

u ( )surge

r ( )yaw

v ( )sway

( )heavew

( )rollp

( )pitchq

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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time
0 50 100 150

0

Total motion, LF + WF

LF motion

WF motion

Measurement equation (GNSS + compass)
Velocity (Body)

PosiCon/heading (Earth)

• Observer must reconstruct
η, ηw and ν from y

• Only η and ν are used for feedback

Observer requirements:

Low-frequency
motion from the
ship model

Wave frequency
motion generated by
a wave spectrum

measurement noise

PSD

frequency

y = η + ηw + e

η = [x, y, z]T

ν = [u, v, r]T

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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kinematics

bias

wave model

dynamics

measurements

Goal:
choose the gainsKi
such that the error
dynamics is passive and 
exponentially stable,

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Observer error dynamics (position and WF models):

Observer error dynamics including velocity/bias:

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Forming two passive blocks H1 and H2:

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Passivity is a property of engineering systems, most commonly used in electronic engineering and control systems. 

A passive component, may be either a component that consumes (but does not produce) energy, or a component that 
is incapable of power gain. A component that is not passive is called an active component. 

An electronic circuit consisting entirely of passive components is called a passive circuit (and has the same properties 
as a passive component).

A transfer functions h(s) must have phase greater than -90° in order to be passive.

Passivity is related to stability and Lyapunov analysis can be used to prove passivity/stability in nonlinear systems while 
for linear systems the Kalman-Yakubovich-Popov (KYP) Lemma can be used to prove stability.

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Definition 6.3 (Khalil 2002) A nonlinear system is said to be passive if there exists a continuously 
differentiable positive definite function V(x) (called storage function) such that:

Moreover, it is said to be

• Lossless if

• Input-feedforward passive if                                    for some function j(u)

• Input strictly passive if                                    and uTφ(u) > 0, for all u ≠ 0

• Output-feedback passive if                                   for some function r(y)

• Output strictly passive if                                   and yTρ(y) > 0 , for all y ≠ 0

• Strictly passive if                               for some positive definite function y(x)

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements

uTy ! V!

uTy ! V"

uTy ! V! " uT!!u"

uTy ! V! " uT!!u"

uTy ! V! " yT!!y"

uTy ! V! " yT!!y"

uTy ! V! " !!x"
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Proposition 13.1 (Strictly Passive Velocity Error Dynamics)
The mapping H1 is strictly passive.

Proof: Let,

be a positive definite storage function. Time differentiation of S1, yields:

Using the fact that                                       , yields

This proves that H1 is strictly passive.

H1
!z !"

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Theorem 6.3 (Khalil 2002) The feedback connection of two time-invariant dynamical systems is 
GAS if the origin of the nominal system (u = 0) is asymptotically stable and

• both feedback components are strictly passive
• both feedback components are output strictly passive and zero-state observable, or
• one component is strictly passive, and the other is output strictly passive and zero-state 

observable

In addition, the storage function for each component  must be radially unbounded

1. The mapping                  is strictly passive (block H1)

2. Post-multiplication with the bounded transformation matrix R(t) and pre-
multiplication by it's transpose will not affect the passivity properties. 

3. Hence, it only remains to show that the mapping                 (block H2) is strictly passive 

!z ! "#

For linear systems passivity can easily be checked  by applying the Kalman-Yakubovich-Popov (KYP) Lemma.

!! ! z"

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Since H1 is strictly passive andH2, given by three matrices (A, B, C) according to

can be made SPR by choosing the gain matrices Ki (i=1,…,4) according to the KYP Lemma. Hence, 
according to Lemma 6.4 (Khalil 2002), H2 is strictly passive since H2  is SPR

Interconnected system H1 and H2 is GAS

Lemma 13.1 (Kalman-Yakubovich-Popov)
Let H(s) = C(sI-A)-1B be an m×m transfer function matrix, where A is Hurwitz, (A,B) is controllable, and (A, C) is 

observable. Then Z(s) is strictly positive real (SPR) if and only if there exist positive definite matrices P = PT and Q = QT

such that

H2
z!!!

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Determination of the Observer Gains
The mapping H2 describes three decoupled systems in surge, sway, and yaw.

This suggests that the observer gain matrices should have a diagonal structure:

function of the wave frequency.

Opens for

-gain scheduling
-adaptive observer design

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Three decoupled transfer functions

H0 is determined by using pole placement

The desired transfer function is low-pass + notch

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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The remaining gains K3 and K4 in HB is found by frequency shaping. The transfer functions hi(s) must all have 
phase greater than -90° in order to be passive.

hBi!s" ! K4i
s" 1

Ti
"
K3i
K4i

s" 1
Ti

Ti!1
" K4i

s" K3iK4i

s" 1
Ti

H!s" ! H0!s"HB!s"

hdi!s" ! s2"2!i"ois""oi2

s2"2#ni"ois""oi2 !s""ci "

This is satisfied for

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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MSS Simulink: demoCS2passiveObserverDP.slx
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The first experiments were performed 
in the GNC laboratory at the 
Department of Engineering Cybernetics, 
NTNU using CyberShip I which is 
offshore supply vessel scale 1:70.

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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Measured (gray) and estimated  (solid) x-position deviation [m] LF

Measured (gray) and estimated  (solid) y-position deviation [m] LF

Measured (gray), estimated LF (solid) and desired (dotted) heading [deg]

Estimated bias in surge [kN]

Estimated bias in sway [kN]

Estimated bias in yaw [kNm]

I II III I II III

Experimental results: implemented and 
tested onboard several ships and rigs 
offshore.

Reduced commissioning time: easy to tune 
compared to the Extended Kalman Filter.

13.5.1 Case Study: Passive Observer for Dynamic 
Positioning using GNSS and Compass Measurements
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13.5.2 Case study: Passive Observer for Heading 
Autopilots Using only Compass Measurements
Passivity-Based Pole Placement
The observer error dynamics can be reformulated as two subsystems for yaw angle/rudder bias, and yaw rate. Fossen and 
Strand (1999)  have shown that these systems forms a passive interconnection if the observer gains are chosen according to 

where                     is the filter cut-off frequency!c ! !0
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13.5.2 Case study: Passive Observer for Heading 
Autopilots Using only Compass Measurements

Example 13.6 (Passive Wave Filtering)
Consider the Mariner class cargo ship with K = 0.185 s-1 and T=T1 + T2 -T3 = 107.3 s (Strøm-Tejsen 1965). The bias 
time constant is chosen to be rather large, that is Tb = 100 s. The wave response model is modeled by a linear 
approximation to the JONSWAP spectrum with                   and                       rad/s.

State-space model

! ! 0. 1 !0 ! 1. 2

ship + bias models

wave-frequency 
model
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Example 13.6 (Passive Wave Filtering, cont.)
Using passivity as a tool for filter design with cut-off frequency                         , yields:!c ! 1. 1!0

Note that the notch effect at         is more than -20 dB for h3(s) 
and h4(s) representing the state estimates             . We also see 
that high-frequency motion components above        is low-pass 
filtered. Finally, the transfer function h2(s) representing 
reconstruction of the WF motion         filters out signals on the 
outside of the wave response spectrum.

Bode plot showing the wave filter transfer functions and 
the JONSWAP spectrum.

!0 ! 1. 2 !c ! 1. 1!0
!0

!! and r!
!c

!! w

13.5.2 Case study: Passive Observer for Heading 
Autopilots Using only Compass Measurements
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13.5.2 Case study: Passive Observer for Heading 
Autopilots Using only Compass Measurements
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13.5.3 Case study: Passive Observer for Heading 
Autopilots Using both Compass and Angular Rate 
Sensor Measurements

It is advantageous to integrate gyro and compass 
measurements in the observer. This results in less 
variance and better accuracy of the state estimates.  One 
simple way to do this is to treat the gyro measurements as 
an input to the system model

where bars denotes the gyro bias and uars is the ARS 
measurement. 

This model will give proper wave filtering of the state ψ. 
However, the estimate of r is not wave filtered, since this 
signal is taken directly from the gyro measurement ugyro. 
This can be solved by filtering  ugyro with a notch filter 
hnotch(s) and a low-pass filter to the cost of some phase lag



72
Lecture Notes TTK 4190 Guidance, Navigation and Control of Vehicles (T. I. Fossen)                                           

MSS Simulink: demoPassiveWavefilterAutopilot1.slx 
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The wave filter has been tested on a scale model of MV 
Autoprestige of the United European Car Carriers (UECC)

The maneuvering test were performed in the 
Ocean Basin at MARINTEK in Trondheim April 2001.

13.5.3 Case study: Passive Observer for Heading 
Autopilots Using both Compass and Angular Rate 
Sensor Measurements
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It is seen that the WF motion components are 
quite well removed from the estimate of  
resulting in good course-keeping capabilities. 

We also notice that the estimate of           is 
quite good, while r could be slightly improved 
by changing the observer  gains. 

Significant wave height:  Hs= 1.3 m  (full scale)
Frequency of encounter:         = 1.07 rad/s
Cruise speed: U = 2.3 m/s (model scale)

!e

!w

13.5.3 Case study: Passive Observer for Heading 
Autopilots Using both Compass and Angular Rate 
Sensor Measurements
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MSS Simulink: demoPassiveWavefilterAutopilot2.slx 
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Sensors for marine craft:
• Understand the principles for GNSS position, GNSS heading, magnetic compass and 

gyrocompass
• Understand what we mean with wave filtering and when to apply a wave filter algorithm
• Be able to estimate the wave encounter frequency of a marine craft

Model-based state estimation:
• Understand the principles and design methods for fixed-gain Luenberger observers, Kalman 

filters and passive observers
• Be able to model marine craft under DP and heading control, and include dynamic models of the 

sensor and navigation systems using realistic measurement noise 
• Be able to design Kalman filters for DP and heading autopilots with wave filtering capabilities
• Be able to design passive observers for DP and heading autopilots with wave filtering capabilities

Chapter Goals – Revisited


