Chapter 13 — Model-Based Navigation Systems

13.1 Sensors for Marine Craft
13.2 Wave Filtering

13.3 Fixed-Gain Observer Design
13.4 Kalman Filter Design

13.5 Passive Observer Design

Conventional ship and underwater vehicle control systems are implemented with a model-

based state estimator for processing of the sensor and navigation data.

"Wﬂlmll'!lmllﬁﬁliﬂlﬂllﬂl\ll 1
The quality of the raw measurements (GNSS, accelerometers, gyros, compass etc.) are usually ‘!’Hﬂ”&ﬂUﬂ!ﬂ@E@ﬁ@ﬁu|uuumw
monitored and handled by a signal processing unit or a program for quality check and wild- - ot

point removal. The processed measurements are transmitted to the sensor and navigation

computer which uses a state estimator capable of noise filtering, prediction and reconstruction Sensonor STIM300 IMU

of unmeasured states. https://www.sensonor.com

The most advanced navigation system for marine applications is the Inertial Navigation System (INS); see Chapter 14.
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Chapter Goals

Sensors for marine craft:
Understand the principles for GNSS position, GNSS heading, magnetic compass and
gyrocompass

Understand what we mean with wave filtering and when to apply a wave filter algorithm
Be able to estimate the wave encounter frequency of a marine craft

Model-based state estimation:
Understand the principles and design methods for fixed-gain Luenberger observers, Kalman
filters and passive observers
Be able to model marine craft under DP and heading control, and include dynamic models of the
sensor and navigation systems using realistic measurement noise
Be able to design Kalman filters for DP and heading autopilots with wave filtering capabilities
Be able to design passive observers for DP and heading autopilots with wave filtering capabilities
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Chapter 13 — Model-Based Navigation Systems

Aiding

il In a model-based KF, the craft position, velocity and
f | Navigation | Navigation solution attitude are states in the estimator, while linear

>

| filter acceleration and angular rates are generated using
a mathematical model (Chapter 13).

Strapdown navigation equations

Aiding
Eonttrd] Alternatively, the model can be avoided by using
inputs Vehicle f L accelerometers and angular rate sensor (ARS)

ot Navigation solution . .
Navigation | "2VIEe7on*0 7700 measurements as inputs and integrate the

kinematic equations (Chapter 14) . This is an
Equations of motion Inertial Navigation System (INS).

model

filter

The drawback of the model-based approach to aided INS is model uncertainty when implemented in a KF. One obvious
advantage is that additional sensors such as the inertial measurement unit (IMU) are avoided. Another benefit is that the
mathematical model can be used for fault detection and isolation, as well as fault recovery.

The marine craft equations of motion when implemented in a KF is in fact a predictor, which can be used to predict future
motions of the craft when sensors fails or have outages for shorter periods of time.
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Chapter 13 — Model-Based Navigation Systems
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Navigation is the science of directing a craft by determining its position/attitude, course and distance traveled. In some cases,
velocity and acceleration are determined as well. Navigation is derived from the Latin navis, “ship”, and agere, “to drive”.
It originally denoted the art of ship driving, including steering and setting the sails.
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13.1 Sensors for Marine Craft

The primary measurement systems for model-based navigation filters when used onboard a surface craft are global
satellite navigation systems (GNSS) and heading angle sensors. More specific,

GNSS position
GNSS heading
Magnetic compass
Gyrocompass

The position and heading angle measurements are used as aiding — to prevent drift when integrating the equations
of motion. Sometimes and inertial measurement unit (IMU) is included in the state estimator as optional
measurements.

Aiding

Vehicle f Navigation | Navigation solution
1

.
>

model

filter

Equations of motion
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13.1.1 GNSS Position

GNSS position is the primary sensor for terrestrial navigation. The four commercial systems are:

NAVSTAR Global Positioning System (GPS): The United States NAVSTAR GPS was started by the
U. S. Department of Defense in 1973, with the first prototype spacecraft launched in 1978 and
the full constellation of 24 satellites operational in 1993.

GLONASS: From Russian GLObal’naya NAvigatsionnaya Sputnikovaya Sistema. The development
of the Russian GLONASS satellite navigation system began in the Soviet Union in 1976 and the
constellation was completed in 1995. After a decline in capacity in the 90s, GLONASS was
restored. Full orbital constellation of 24 satellites was achieved in 2011, enabling full global
coverage.

Galileo: The European Union’s Galileo positioning system went live in 2016. It is an indepenc
civilian positioning system designed by European nations so they do not have to rely on GPS,
GLONASS or BeiDou, which could be disabled or degraded by their operators at any time.
BeiDou: Chinese for the Big Dipper or the North Star. In 2015, China launched the third
generation BeiDou (BeiDou-3) for global navigation. BeiDou-3 consists of 35 satellites and the
system has provided global services since 2020.

Differential and augmented GNSS: The main idea of a differential GNSS system is that a fixed receiver located, for example,
on shore with a known position is used to calculate the GNSS position errors. The position errors are then transmitted

to the GNSS receiver on board the ship and used as corrections to the actual ship position. In a differential GNSS the
horizontal positioning errors are squeezed down to less than 1 m (typical accuracy of a ship positioning system today).
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13.1.2 GNSS Heading

The GNSS system can be used to determine the heading angle, even though it was not designed for this purpose.

A “GNSS compass” uses a pair of antennas separated by 50 cm or more to detect the phase difference in the carrier
signal from a particular GNSS satellite.

Given the positions of the satellite, the position of the
antenna, and the phase difference, the orientation of
the two antennas can be computed.

The accuracy can be further improved by using three
antennas in a triangle to get three separate readings
with respect to each satellite. It is also beneficial to
increase the distance between the antennas.

The GNSS heading solution is not subject to magnetic
declination, but it will be sensitive to ionospheric
disturbances and multipath effects.

The Otter USV manufactured by www.maritimerobotics.com
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13.1.3 Magnetic Compass

A magnetic compass is in fact an extremely simple device (as opposed to a gyroscopic W Z
compass). It consists of a small, lightweight magnet balanced on a nearly frictionless %&M/Mp
e .
e

Wil )y, 00
aww Y
W "y,

pivot point. The magnet is generally called a needle. S

The magnetic field inside the Earth has its south end at the North Pole and opposite. ' \ ; /‘{\\,,,é

Hence, the North end of the compass needle points towards the North Pole (opposite : 3 x =

magnets attract). The magnetic field of the Earth is, however, not perfectly aligned along

the Earth’s rotational axis. It is skewed slightly off center. This skew or bias is called the & _
declination and it must be compensated for. Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Kompas Sofia.j

The heading angle is the sum of the the magnetic heading measurement v, and the declination angle ¢ given by

¢:¢m+5

The declination angle for a given longitude / and latitude L can be calculated using the World Magnetic Model (WMM),
which is a joint project by the United States’ National Geospatial-Intelligence Agency (NGA) and the United Kingdom’s
Defence Geographic Centre (DGC); see next slide. The WMM magnetic model comes with C software and executables.

Sensitivity to magnetic variations and declination cause problems in ship navigation. These problems were overcome
after the introduction of the gyroscopic compass.
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13.1.4 Gyrocompass

The large variations in the magnetic character of ships caused by electrical
machinery and weapon systems make the construction of accurate
declination or deviation tables very difficult.

In parallel works, Dr H. Anschiitz-Kaempfe of Germany and Elmer Sperry of

the USA worked on a practical application of Hopkins’ gyroscope. In 1908

Anschiitz patented the first North-seeking gyrocompass, while Elmer Sperry Elmer A. Sperry, Sr.  Hermann Anschiitz-Kaempfe
was granted a patent for his ballistic compass, which includes vertical (1860-1930) (1872-1931)

damping, three years later. Wikipedia commons:

https://commons.wikimedia.org/wiki/File:ElImer Ambrose Sperry.jpg
https://commons.wikimedia.org/wiki/File:Hermann Anschiitz-Kaempfe.jpg

Today gyroscopic compasses are widely used for navigation, because they
have significant advantages over magnetic compasses. In particular they
are unaffected by ferromagnetic materials, such as in a ship’s steel hull,
which distort the magnetic field. Another important aspect is that they are
not affected by electromagnetic fields, which are generated by rotating
machinery and engines moving electric charges.

Kongsberg gyrocompass
and INS MGC R3

Unfortunately, a gyrocompass is quite expensive, which limits their use to
large ships and safety-critical vehicle systems. Smaller vehicles usually
navigate by using magnetic compasses, course over ground or GNSS
heading.
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13.2 Wave Filtering

Wave filtering is one of the most important issues to consider when designing ship
control systems.

It is important that only the slowly-varying disturbances are counteracted by the
steering and propulsion systems; the oscillatory wave-frequency (WF) motion due to
the waves (1st-order wave-induced forces) should be prevented from entering the
feedback loop (Balchen 1976).

Definition: Wave Filtering

Wave filtering can be defined as the reconstruction of
the low-frequency (LF) motion components from wave-
induced noisy measurements of position, heading and in
some cases velocity and acceleration by means of a
state estimator or a filter.

—— LF Heading (filtered)
Total Heading (LF+WF)

Heading Angle [deg]

Remark: If a state estimator such as the Kalman filter is
applied, estimates of the WF motion components (first-
order wave-induced forces) can also be computed.

Total motion = LF motion + WF motion

80 100
Time [s]
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13.2.1 Low-Pass Filtering

For wave periods in the interval 5s < T < 20s, the dominating wave frequency (modal frequency) f, of a wave spectrum
will be in the range

0.05Hz < fy < 0.2 Hz

The circular frequency w = 27 f, corresponding Swell
. . we
to periods Ty > 5s is and tidal Developing

waves sca

wo < 1.3 rad/s

Waves can be accurately described by 1st- and 2nd-order linear wave theory:

* 1st-order wave-induced forces (WF forces) produce large oscillations about a mean wave force.
WF forces are represented as a wave spectrum.
Compensated for by using wave filtering in the state estimator

* 2nd-order wave-induced forces or mean wave (drift) forces are slowly varying forces.
Compensated for by using integral action in the control law
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13.2.1 Low-Pass Filtering

A feedback control system will typically move the
bandwidth ), of the vessel up to 0.1 rad/s which still
is below the wave spectrum. Sainldel,

. — . S ol [ TS Manner olass vessel |
The wave disturbances will typically be inside the ; : i 11| = oiltanker
. g : R : ;- | — cargo ship
bandwidth of the servos and actuators of the vessel. o : - \\ . |L— JONSWAP spectrum
Hence, the wave disturbances must be filtered out : : i 9 % . i BEiIE
before feedback is applied in order to avoid

unnecessary control action.

19 H i vt H
. z o 1
LF vessel motion 10

Frequency [rad/s]
WF motion

1
+ Mariner class vessel |
| == oil tanker :
— cargo ship

For a large oil tanker, the crossover frequency o,
can be as low as a 0.01 rad/s, while smaller vessels
like cargo ships and the Mariner class vessel, are
close to 0.05 rad/s.

Frequency [rad/s]
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13.2.1 Low-Pass Filtering

For a ship moving at forward speed U > 0, there will be a shift in the wave
spectrum peak frequency .

The shifted frequency is referred to as the frequency of encounter w, and it
depends on ship speed U, modal wave frequency g and wave direction 3

B=120° Bow sea

Beam sea
Head sea

Quartering sea

B=30° p=150° Beam sea

Following ¢ g i Head sea

__ g | __ g
e = 4Ucos(B) @ Ucos(B)

_ ' g ; i
w=—"— Following sea @)
2O \)uartering sea
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13.2.1 Low-Pass Filtering

For sea states where the encounter frequency w, is much higher than the bandwidth w, of the control system,
Op X We

a LP-filter can be used to filter out the 1st-order wave-induced forces. This is typically the case for large vessels
such as oil tankers.

For smaller vessels, a LP filter in cascade with a notch filter is quite common to use.

Waves, wind and
ocean currents

v

Control LP and Control || GNSS +

Setpoints
P System notch filter Allocation compass

Estimated positions and velocities
Observer

A J

Guidance System Control System Navigation System

LP and notch filters in series with the control system
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13.2.1 Low-Pass Filtering

Autopilot measurement equation

y(s) = \hship(s)é(s)j + hwave(s)w(s)j

N

(s) oo (5)

Total motion, LF + WF

LF motion

where

y(s) is the compass measurement
w(s) is zero-mean Gaussian white noise

WEF motion

\/\/\‘/f\/\/\/\/\/\/\/\/\f\/\/\/

0(s)is the rudder input. VVVVVUVVVUVYVVUVVYVVYVVYVY
v(s)is the LF motion . ‘

v w(s) is the WF motion

0 50 100 150
time

Linear theory:

Consequently, the feedback control law §(s) should be a function of w(s) and not y(s) in
order to avoid 1st-order wave-induced rudder motions.

s
s2 + 2 wps + w

. K(Tgs + 1)
N S(T18 + ].)(TQS + 1)

hwave(s) == hShiP(S)
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13.2.1 Low-Pass Filtering

A first-order low-pass filter with time constant T, can be designed according to:
_ 1 1
hip(s) = s wp < T < W, (rad/s)

This filter will suppress disturbances over the frequency 1/T-.
This criterion is hard to satisfy for smaller vessels.

Higher-order low-pass filters can be designed by using a Butterworth filter:

_ 1
hp(8) = 565 |

(n = Dhyp(s) = ———
where p(s) is found by 1+ s/oy

2
solving the Butterworth (n = Dhy(s) = Wi

———; ( =sin(45°)
2
polynomial: 5%+ 2o + 0f

= = (0} . 1 0 — qf 0
p()p(=s) = 1+ (S/jwf)zn (n = 3hu(s) = s*+ 2o +of  1+slor’ 5 = sl

2
i {1 = sin(22.59), ¢, = sin(67.5%)

2
(= () = [
i=1

L2+ 2o + 0F
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13.2.1 Low-Pass Filtering

20
0
-20

-40
-60
-80

|

10
Frequency (rad/s)

Phase (deg)

|

10°
Frequency (rad/s)

wave
disturbance

@p
bandwidth of
closed-loop

system low-pass
filter

A higher-order low-pass filter implies better disturbance suppression to the price of additional phase lag
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13.2.2 Cascaded Low-Pass and Notch Filtering

For smaller craft the bandwidth of the controller can be close to or within the range of the wave spectrum.
This problem can be handled by using a low-pass filter in cascade with a notch filter:

A _ frequency range of
W (s) = hip(s)ha(s)y(s) wave disturbance

where
2428 st}
n( ) (s+wn)?

For a vessel moving at forward
speed U the optimal notch

Frequency (rad/s)

frequency will be:
Oy = We

but... notch filtering also introduces
additional phase lag!

therefore... use Kalman filtering or a "
linear/nonlinear observer Frequency (rad/s)
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13.2.3 Wave-Frequency Estimation

FFT for computation of the heave-response spectrum
Unfortunately, creating a FFT frequency spectrum takes
time and it results in back-dated information when
estimating the time-varying wave encounter frequency.
This is due to the moving window necessary for
applying the FFT algorithm.

However, it is possible to estimate . if speed and
heading are constant for a period of time (typically 30
minutes). The best results are obtained by using the
heave response, which can be logged by using an
accelerometer. Good results are also obtained for pitch
angle response data.

Matlab:

The Matlab example file EXFFT . m in the MSS toolbox shows how the wave en-
counter frequency can be estimated from response data using FFT. The heave ac-
celeration time series are generated using the wave spectrum

10s

_ 13.16
82 + 2 we + w2 & ( )

as=
where w is Gaussian white noise. This is compared to the data of a regular wave
a, = Acos(w,t). The unknown peak frequency is chosen as w. = 0.8 rad/s and
the peaks are easily observed in the FFT plots of Figure 13.7.

% peak frequency [rad/s]

500; IMU sampling frequency
1:/:Fsy; sampling time [s]
30 » 60 * fs; 30 minutes data

= (0:N-1) =« h; time vector [s]

% Wave spectrum data and sinusoidal (regular) waves

Kw = 10; lambda = 0.1; % wave spectrum
sys = tf([Kw 0], [1 2xlambdaxwe wexwe]);

[mag, phase,wout] = bode (sys,logspace(-1,0.2,1000));

mag = reshape (mag(l,:),1,1000);

x1 = lsim(sys,randn(1l, length(t)),t,0,'zoh')"'; % time responses
X2 = cos(we * t);

X = [x1y %25

% Fast Fourier transform (FFT)

n = 2”nextpow2 (N); % pad the input with trailing zeros

Y = £EE(X,m2); compute the FFT

P2 = abs(Y/N); double-sided spectrum of each signal
Pl = P2(:,1:n/2+1); % signle-sided spectrum of each signal
P1(:,2:end-1) = 2xP1(:,2:end-1);

% Plots

£ 0: (fs/n) : (fs/2-fs/n); w = 2xpixf; % frequency vectors

M = 600; % no of samples to plot
subploeki(2.1:1):

plot (w(1:M),P1(1,1:M)/max(P1(1,1:M)),wout,mag/max (mag));
title(['Normalized wave spectrum in the frequency domain']);
subpiliet (2,-1,:2)5

plot(w(1l:M),P1(2,1:M));

title(['Normalized sinusoidal in the frequency domain']);
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13.2.3 Wave-Frequency Estimation

Normalized wave spectrum in the frequency domain
T T T T T

Matlab example file EXFFT.m in the MSS toolbox

The FFT applied to a moving window of data
generated by using the following signals:

10 s
= w
82 4+ 2w, + w?

Wave spectrum ¢,

Sinusoidal wave a, = A cos(we t)

The wave encounter frequency w. = 0.8 rad/s is Normalized sinusoidal in the frequency domain
observed as the peak frequency of both data sets. ! ‘ ‘
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13.2.3 Wave-Frequency Estimation

Nonlinear observer for online estimation of the wave encounter frequency

T1 = To Regular wave with unknown frequency

Amplitude estimator

T wfc(y — 1) — 2wsTy y = Asin(wet + €)
k‘ffI?l (i?g — éwitl)

We < WF,
O = =l

Adaptive gain-switching algorithm
Low-pass filtered gain

kinit 1 £ < tinit
]C(A) = kmin ift > tinit and A > A(
kmax ift > tinie and A < A

kmax 1

1

llll\llll

Tfi(?f + k?f — k(z‘i)

D. J. Belleter, R. Galeazzi and T. I. Fossen. Experimental Verification of a Globally Exponentially Stable Nonlinear Wave Encounter Frequency
Estimator. Ocean Engineering, Elsevier, Volume 97, No. 15 March 2015, pp. 48-56.
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13.2.3 Wave-Frequency Estimation

Pitch angle measurement Gain evolution

—0 —— Switching gain
g Fixed gain

i

Pitch angle [deg]

10 15 20 25

Time [min] Time [min]

—We switch

== =We fixed

I I 1
15 20 25

Time [min]

Fig. 4. Comparison of the frequency estimator with and without a gain switching mechanism.

D. J. Belleter, R. Galeazzi and T. I. Fossen. Experimental Verification of a Globally Exponentially Stable Nonlinear Wave Encounter Frequency
Estimator. Ocean Engineering, Elsevier, Volume 97, No. 15 March 2015, pp. 48-56.
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13.3 Fixed-Gain Observer Design

The simplest state estimator is designed as a fixed-gain observer where the goal of the observer is to reconstruct the
unmeasured state vector x from the measurements u and y of a dynamical system.

measurement
disturbances noise

€

measurements

>
o

control inputs Marine

craft

Yy

< estimated states
Observer N

x

Observers are derived from deterministic models, which neglects process w and measurement € noise.
However, an observer will still work when adding Gaussian white noise to the system if the gains are tuned properly.

State estimators and observers can only be designed for systems that are observable!
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13.3.1 Observability

Definition (Observability in LTI Systems)
Consider the linear time-invariant system

x = Ax + Bu
y=Cx+ Du

The pair (A, C) is observable if and only if the
observability matrix

O — [CT | ATCT | |(AT)n—ICT]

has full column rank or (at least) a left inverse exists.
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Definition (Observability in LTV Systems)
Consider the linear time-varying system

&= A(t)x + B(t)u

y=C({t)x + D(t)u

The pair (A(t), C(t)) is observable if and only if the is
observable at time t; if and only if there exists a finite

t; > tgsuch that the n x n the Observability Gramian

o0

wquQ:i/ &7 (t,, 7)CT (1)C(r)B(tr, 7)dr

0l

is nonsingular when ®(t,7) is the state transition
matrix of the system & = A(t)x.




13.3.2 Luenberger Observer

Observer goal: reconstruct the unmeasured state vector x from the measurements u and y

LTI system
x = Ax + Bu
y=Cx+ Du
An observer copying the dynamics is

-

Injection term

measurement
noise
€

disturbances

measurements

>

control inputs

Yy

estimated states

Observer

-

z

where K is an observer gain matrix to be constructed suchthat £ — x ast — oo

Error dynamics

r=(A-KC)zx

Asymptotic convergence of T = T — & to zero can be
obtained for a constant K if the pair (A, C) is observable.

Matlab:

If the observability matrix O is nonsingular, the poles of the error dynamics can be
placed in the left half-plane. The rank of O is checked by rank (obsv (A, C))
while the observer gain matrix K is computed using

% vector of distinct observer error poles
% observer gain matrix

[pl,...,pn]"’
place(A',C,p)"’

P
K

Note that both K and A are transposed, since the dual problem of the regulator
problem is solved.
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13.3.3 Case Study: Luenberger Observer for Heading
Autopilot

Nomoto Ship Model Exposed to Wind, Waves and Ocean Currents
Let a 1st-order Nomoto model describe the LF motion of a ship:

b=r
1

: K
T:—TT+ T(&—b)—f—wl

i)ZUJQ

where b is the rudder offset (counteracts slowly-varying moments on the ship due to wave drift
forces, LF wind and ocean currents). A linear wave model can be used to model the wave response

§w = Yuw h(S) _ Kys .

. 2
¢w = _w(Q)gw s 2/\w0ww 3 wa3 § +2160()S+a)0

The process noise terms, w;,w,, and w; are modeled as white noise processes.
The compass measurement equation can be expressed by the sum

y:¢+q/)w+g

where v represents zero-mean Gaussian measurement noise.
Notice that the yaw rate r nor the wave states &, and y,, are measured.
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13.3.3 Case Study: Luenberger Observer for Heading
Autopilot

Nomoto Ship Model Exposed to Wind, Waves and Ocean Currents
State-space model:

r = Ax + bu+ Fw

—cTac—i—e

T = (€0, Vo, U, 7, BT

w = [wla wa, wB]T

U = 0,

Is the ship model exposed to environmental forces observable?  YES
This implies that yaw rate, bias and waves states can be estimated using a single compass measurement!
- see example on next page
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13.3.3 Case Study: Luenberger Observer for Heading
Autopilot

Matlab:
The following example shows how the Luenberger observer gains of a ship au-
topilot system can be computed in Matlab.

Example 13.2 (Luenberger Observer Gains)

It is straightforward to see that the autopilot model with WF wind and
ocean current model (13.52)—(13.53) is observable from the input 6 to the
compass measurement y. Let K = 1, T =50, A = 0.1 and wy = 1, then

K =1; T = 50; lambda = 0.1; w0 = 1;

A [01 000
-w0"2 -2+lambda»w0 0 0 0
0550, 09 0
88 8 -1)r -BT
0000 0];

c [0 .1 1.0 0%
n = rank (obsv(A,c'))

results in n = 5 corresponding to rank(O) = 5. Hence, the system is observ-
able according to Definition 13.2, implying that the states r,b, 1., and &, can be
reconstructed from a single measurement y = 1 + 1, + € using a Luenberger

observer

& =A% +bu+k(y—19)

j=c'&

The filter gains can be computed by pole placement, for instance
k = place(A',c, [pl,p2,p3,p4,p5])"

where p1,p2,p3,p4 and p5 are the desired closed-loop poles of the error dy-
namics (13.43).
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13.4 Kalman Filter Design

Since 1960 the discrete-time Kalman filter (KF), and nonlinear extensions thereof, has been used to provide integrated
navigation solutions based on different types of measurements.

e KFis an alternative solution to the pole-placement technique is to apply the discrete-time
Kalman filter (Kalman 1960) to compute the estimator gain matrix K.

Kalman filtering (or optimal state estimation in sense of minimum variance) allows the user to
estimate the state x of a dynamic system from a noise-contaminated input-output pair (u, y).

measurement w is a zero-mean Gaussian white noise process with
disturbances noise covariance matrix Q = Q"> 0

€ . . . . .
£1is a zero-mean Gaussian white noise process with

Marine measurements covariance matrix R = RT> 0

1=

control inputs

craft
Yy

Kalman estimated states If the system is observable, the state vector = can be
filter —> reconstructed recursively through the measurement
x vector y and the control input vector u

The discrete-time KF is used in millions of applications, and it is the core algorithm of all modern navigation systems.
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13.4.1 Discrete-Time Kalman Filter

The KF is implemented in discrete time since the measurements are transmitted at different frequencies. The discrete-
time KF (Kalman 1960) is optimal for computer simulations and practical computations. Hence, we will not study the

contrious-time KF.
Discrete-time state-space model

zlk + 1] = Aglklz[k] + Balk|ulk] + Eq[k]w[k]
y[k] = Cq[k]z[k] + Dg[k]ulk] + €[k]

LTI systems where A* exists (Appendix B1.1)

Aylk] =@
Bykl=A"Y(®-1,)B
Cilk]=C
Dyk]=D
Ejkl=AY®-1I,)E

1 1
<I>mIn+Ah+§(Ah)2+---+ﬁ(Ah)N
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General solution avoiding A

Ad — eAh

h
B, = / e Bdr
0

Matlab:
[Ad,Bd] = c2d(A,B,h)
[Ad,Ed] = c2d(A,E,h)

The discretized system matrices for an LTI systems are computed in Matlab by




13.4.1 Discrete-Time Kalman Filter

Wikimedia commons:
https://commons.wikimedia.org/wiki/File:Rudolf Kalman.jpg

Table 13.1: Discrete-time Kalman filter.

Py

+ =
P (0] = E[(x[0] — 2~ [0])(=[0] — & [0]) ]

Initial values

A

K[k = P HCTH (CalklP HCT [k + Ralk])

KF gain

A

&~ [k] + K[k] (y[k] — Cqlk]@~ [k] — Dalklulk])
k)"

State corrector

[£]
Covariance corrector Plkl = (I, — K[k|C4lk]) P [k] (I, — K[k]Cq|

+ K[k Ra[k] K " [k]

Rudolf E. Kalman (1930 - 2016)

Hungarian-American electrical
engineer, mathematician and inventor.

State predictor T~ [k + 1] = Aglk]z[k] + Balk|u[k]
P [k+1] = Ay[k]P[K]A] [K] + Ea[k]Qq[k] E, [K]

Covariance predictor

where
Qd7 Rd

P

Covariance matrices for the process and measurement noises
A priori state and covariance matrix estimates (before update)
A posteriori state and covariance matrix estimates (after update)

A
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13.4.1 Discrete-Time Kalman Filter

T~ [k] = 2o

P 0]=P;

l Initialization

Compute Kalman gain

K[k] = P [K]C][K] (Cd[ 1P [K]Cy k] + Hd[k])ﬂ

|

State corrector

Measurement

a[k] =& [k] + K[k] (y[k] — Calk]z " [K] - Dylk]ulk]) | State estimate

Covariance corrector

Plk] = (I, — K[K|Culk)) P™[K] (I, — K[K|Calk])" + K[k Ralk]K " [k]

v

State and covariance predictors
z [k + 1] = Ag[klz[k] + Bg[k|ulk]
P [k + 1] = Agk|P[K]A] K] + Eq[k]Q (K E [k

Kalman filter loop
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Matlab:
The pseduocode for the KF loop in Figure 13.11 is:

% initialization
x_prd = x0; Qd =
P_prd = PO; Rd

constant;
constant;

% MAIN LOOP
for i=1:N

KF gain: K[k]
K = P_prd  Cd' % inv( Cd * P_prd = Cd' + Rd );
IKC = eye(n) - K x Cd;

% Measurement: y[k]

Corrector: x_hat[k] and P_hat [k]
=x_prd + K* (y -Cd* xprd - Dd * u );
= IKC » P_prd » IKC' + K » Rd » K';

Predictor: x_prd[k+1l] and P_prd[k+1]
= Ad » x_hat + Bd * u;
P_prd = Ad  P_hat  Ad' + Ed x Qd = Ed';

end




13.4.2 Discrete-Time Extended Kalman Filter

The Kalman filter can also be applied to nonlinear systems with non-additive input and process noise

y=h(z,u)+e

If the system is observable, the‘state vector can be estimated using the discrete-time EKF, which is based on the
discrete-time predictor is

z[k + 1] = z[k] + hf (x[k], u[k], 0) Euler’s method
y[k] = h(z[k], u[k])

Disadvantages

* The linear KF is an optimal estimator and it is easy to establish stability and convergence properties thanks to linear system
theory. Unfortunately, optimality is lost when applying the EKF since it relays on linearization.

f the initial estimate of the state is wrong, or if the process is modeled incorrectly, the EKF may quickly diverge, owing to its
linearization.

* Another problem with the EKF is that the estimated covariance matrix tends to underestimate the true covariance matrix

and therefore risks becoming inconsistent in the statistical sense. Care should also be taken with respect to covariance
blow-up and instability.

However, the EKF gives excellent performance in most navigation systems at it is the de facto standard in aided INS
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13.4.2 Discrete-Time Extended Kalman Filter

Table 13.2: Discrete-time extended Kalman filter.

Initial values 0] = xo
P7[0] = E[(a[0] — &7 [0]) @[0] — & [0))T] = Po

KF gain K[ = P"[K]C] [K] (CulkP” [K|C[K] + Ra[k)) B

State corrector zk] = &7 [k] + K[k] (y[k] — h[k](2~ [k], u[k]))

Covariance corrector Plk] = (I, — K[K]|C4[k]) P [k] (I, — K[k]C4[k])"
+K [k Ry[k]|K " [K]

State predictor &~ [k + 1] = I, + hfk](x]k], ulk], 0)

Covariance predictor P [k+1] = Ayk|P[k]A] [k] + E4[k|Q k]| E ] [K]

The discrete-time system matrices are defined by the Jacobians

Aglkl=I,.+h 8f(w[kg,wu[gck]],w[k])

x[k]=a[k], w[k]=0

1o} k], ulk],wlk
B[] = h 2 s ul)

x[k]=&[k], w[k]=0
Cal] = 2hlHulk)

0xl lalkl=a- (k)
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13.4.3 Modification for Euler Angles to Avoid
Discontinuous Jumps

Care must be taken when implementing attitude controllers and state estimators using Euler angles since the roll, pitch and

yaw angles are confined to the interval [0, 27) or [-%, 7), also known as the 1-sphere or the topological space S*
corresponding to a circle in the plane.

When implementing a heading control system for a marine craft, it is crucial that the angle difference is mapped to the
smallest signed angle (SSA) between the current heading and the reference .

To illustrate why, consider a craft with an actual heading of zero degrees and a heading setpoint of 355 degrees.
A naive controller implementation would calculate a heading error of -355 degrees, thus commanding a near full rotation,
going clockwise, although the setpoint is only 5 degrees away in the opposite direction.

Definition 13.5 (Smallest Signed Angle (SSA))

The operator ssa :R — [—m, m) maps the unconstrained angle & = x — xo € R
representing the difference between the two angles x and xq to the smallest difference
between the angles

By =880 T

where ¥, € St
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13.4.3 Modification for Euler Angles to Avoid
Discontinuous Jumps

Matlab:
MSS Matlab function ssa . m for the smallest signed angle.

function angle = ssa(angle,unit)
SSA is the "smallest signed angle" or the smallest difference
between two angles. Examples:
>> angle = ssa(angle) maps an angle in rad to [-pi pi)
>> angle = ssa(angle, 'deg') maps an angle in deg to [-180 180)

Note that in many languages (C, C++, C#, JavaScript), the
operator mod(x,y) returns a value with the same sign as x.

For these use a custom mod function: mod(x,y) = x-floor(x/y) *y
For the Unity game engine use: Mathf.DeltaAngle

if (nargin == 1)

angle = mod( angle + pi, 2 x pi ) - pi;
elseif strcmp (unit, 'deg')

angle = mod( angle + 180, 360 ) - 180;
end
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13.4.3 Modification for Euler Angles to Avoid
Discontinuous Jumps

PD control using the Smallest Signed Angle to avoid Discontinuous Jumps
Consider the yaw angle dynamics

b=
Tyt = Ko 5:T7°’d—|—rd—Kpssa(z/;)—de

ssa modified yaw angle error

Error dynamics

po LIRS R0 By = sa(d) =9

The equilibrium point (,& 1;) = (0, 0) is exponentially stable and globally attractive for the the entire domain g1 R
Proof: see Coates et al. (2U21).

Remark:

as shown by Bhat and Bernstein (2000), systems with rotational degrees of motion
cannot be globally stabilized by continuous feedback due to the topological obstruction
imposed by SO(3), that is 1 is defined on the 1-sphere S! and not on R.
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13.4.3 Modification for Euler Angles to Avoid
Discontinuous Jumps

State Estimation using the Smallest Signed Angle to avoid Discontinuous Jumps
Consider the discrete-time Nomoto model for a marine craft

Yk + 1] = Y[k] + hrlk]
rlk + 1] = r[k] + % (—r[k] + Kd[k] + w[k])
ylk] = Ylk] + elk]

) ssa modified injection terms
State estimator

DIk] = P [k] + Ko ssply[k] — 97 [K])
rk] = 77 [k] + Kassa(y[k] — 9~ [k])

~

gkl =4 [K]

For the continuous system where the estimation error is denoted § = y — ¢ it
follovys from Coates et al. (2021) that the equilibrium point of the estimation error
(7s, y) = (0, 0) is exponentially stable and globally attractive for the the entire domain

St x R.
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13.4.4 Modification for Asynchronous Measurement Data

Synchronous Measurements
When implementing a discrete-time KF it is practical to choose the sampling frequency

fszl/h’

of the system model equal to the measurement frequency such that the states can be propagated from time t,
to time ty,; = h t, where h is the sampling time.

Asynchronous Measurements
In embedded computer systems the measurements can be received at different frequencies than the sampling
frequency of the system.

* GNSS measurements are typically sampled at f,,, = 1 Hz

* Inertial Sensors (accelerometers and gyros) can be sampled at a user specified frequency f.,, >> fg.s
(MEMS-based IMUs can operate at frequencies much larger than 1000 Hz)

— e o
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13.4.4 Modification for Asynchronous Measurement Data

l Initialization

Compute Kalman gain

=1

K[k = P [K]C] [K] (cd[k]P’[k]ch[k] % Rd[k])

Measurement
State corrector

Covarlance corrector

Plk] = (I, — K[K|C4[k]) P[] (I, — K[K|Calk]) " + K[K]Ra[K K [K]

V.

State and covariance predictors
t [k+ 1] = Ag[k]z[k] + Bg[k|ulk]
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@[k] = 2~ [k] + K[k] (y[k] — Cylk)& " [k] — Dalklu[k]) | State estimate
-

y[4]

(k]

P [k +1] = Agfk] P[] A [k] + Eq[K1Q K E] K <\ z (k]

Assume that the sampling frequency is chosen equal to
the frequency of the fastest measurement frequency

fs = fimu

Let the integer Z denote the ratio between the sampling
frequency and the slower GNSS measurement frequency

Z — fS
fgnss

> 1

It is practical to choose Z as an integer such that the slow
measurement appear each Z time in the KF logical loop.

In addition, it is necessary to set the corrector
equations equal to the predicted values when there
are no measurement (see pseudocode on next page)

&~ K]
P [K]




13.4.4 Modification for Asynchronous Measurement Data

Matlab:

surement data:

¥ sampling frequency [Hz]

¥ sampling time
h_gnss = 1/f_gnss; 5 GNSS sampling time
% MAIN LOOP
for i=1:N

% the sampling frequency f_s
if mod( t, h_gnss ) ==

Pseduocode for implementation of a discrete-time KF with asynchronous mea-

¥ IMU (fast) measurement frequency [Hz]
GNSS (slow) measurement frequency [Hz]

% GNSS measurements are Z = f_s/f_gnss times slower than

-

Kalman filter runs at a sampling frequency of 100 Hz

IMU measurements are received at 100 Hz
GNSS measurements are received at 1 Hz

Yy = ...} % new measurement: y[k]
KF gain: K[k]
= P prd * Cd' * inv( €d % P_prd * Cd' + Rd ));
KC = eye(n) - K * Cd;

% Corrector: x_hat[k] and P_hat [k]
x_hat = x_prd + K x (y - Cd » x_prd - Dd * u );
P_hat = IKC x P_prd = IKC' + K » Rd » K';

else

«

IF a slow GNSS position measurement (1 Hz)
is received, compute the Kalman gain and
run the corrector

x_hat x_prd; % no measurement

P_hat P_prd;

end

% Predictor: x_prd[k+1] and P_prd[k+1]
x_prd = Ad x* x_hat + Bd * u;

P_prd Ad * P_hat  Ad' + Ed *» Qd * Ed';

end
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ELSE, there are no GNSS measurements and
the corrector equations are set equal to the
predicted values




13.4.5 Case Study: KF Design for Heading Autopilots

The main sensor components for a heading-controlled ship are:
* Magnetic and/or gyroscopic compasses measuring the yaw angle
* Attitude rate sensor (ARS) measuring the yaw rate
In many commercial systems only the compass is used for feedback control since the yaw rate can be estimated quite

well by a state estimator.

State-space model:

r = Ax + bu+ Fw

yz&i+s

T = [Ew, Yu, ¥, 7, BT

=0

w = [wb wa, w3]T

Ag=I5+ hA,
by = hb,
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13.4.5 Case Study: KF Design for Heading Autopilots

Matlab:
Pseudocode for simulating a discrete-time KF for a ship exposed to first-order WF
motions. The only measurement is a gyrocompass but the 5-state ship-wave model

is observable so all states can be reconstructed from a single measurement (see

Example 13.3.3). The example illustrates how the KF gains can be computed in Matlab for a ship exposed

U . to waves. The KF must be modified to handle yaw angle measurements y = 1)+, +¢
x = x0; x_prd = x0; initialization g S o & 2 oL A i :
B b - .20 on the intervals [0°,360°) or [—180°,180°). The yaw angle injection term is the dif-
ference between the measured and the estimated yaw angles. It is necessary to map
Qd = diag([gll g22 q33]); covariance matrices this signal to [—m, ) to avoid discontinuous jumps in the estimates. The tool for this
Rd = rll; the MSS function ssa.m(see Section 13.4.3), which is used to modify the corrector.

A {0 I 00 0 continious-time ship model
-w0"2 —2+lambdaxw0 0 0 0
00010
000 -1/T -K/T IKC = eye(5) - K * Cd;
[OOOOOOKBTOO;;" Control input and measurement: ul[k] and y[k]
r &

= delta; control system
[01100];

=C * X + v; compass measurement with white noise v
= [0 0 0; Kw 0 0; 0 0 0; 0 1 0; L]z

Corrector: x hat[k] and P_hat[k]

Ad = eye(5) + h » A; Bd = h * B; % discrete—-time KF model c hat = x_prd + K » ssa(y — Cd » x_prd ); % ssa modification

¢cd =C; Ed=h » E >_hat IKC  P_prd = IKC' + K » Rd » K';

I3

2 MAIN LOOP % Predictor: x _prd[k+1] and P_prd[k+1]
for i=1:N x_prd = Ad * x_hat + Bd * u;

B P_prd = Ad * P_hat * Ad' + Ed » Qd » Ed';
% KF gain: K[k]

% Ship-wave simulator: x[k+1]
K =P prd » €Cd'" * inv( €d P prd x Cd" + Rd );

X=X+h+ (A+xx +B *u+Ex*+w);
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13.4.5 Case Study: KF Design for Heading Autopilots
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True LF heading y and
estimate.

True LF heading rate r
and estimate.

True WF component of
the heading ,, and
estimate.




MSS Simulink: demoKalmanWavefilterAutop.slx

wave
amplitude
- w y D2R | P%5Y >
Pilot R2D
input (deg) JL
Linear 2nd-order psi_w psi_w
wave spectrum =
I > R2D
iwl |
psi_w . 3
mag_d . »| psi_d compass psi_d, psi
psi_d and psi_ship
ref3rd,ordeg| g rd oy si
LP-filte®'- g'= ED Compass P I
I acc. d ,—I—d—b_ d/dt(r_d) tracking tau_N rudder angle
/ dldt(r_d) ' controller ar r
Reference model » psi v
Kalman filter based
. - autopilot wave filter
Mariner class cargo ship
Headi il 2nd -
eading autopilot (2nd -order) R2D
»
rand r_ship
XK ] r and r_ship @ @® psi_d, psi and psi_ship
DL psiw File Tools View Simulation Help File Tools View Simulation Help
File Tools View Simulation Help & ’ F > @ @ = -
. o - - = - B = . S = ;
°- 9OP® 5-a- - £ @ °o_~or - - SR ©- $OP® H-a- [ £ 4

1.5

| |
40 60
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13.4.6 Case Study: KF for Dynamic Positioning Systems

WF model

n les

() = 52 + 2 wos + w3

B o8

=S¥ s + W

o) — a8
82 4+ 20 wps + wd

w1 (8)

ws(s)

w3 ()

LTV state-space model (LF + WF)

é = AwE + E,w;
n=R(t)v

bZWQ

¢ = Aut + E, w
T’w — Cw€

¢ Second-order wave drift forces
¢ (Ocean currents
¢ Mean wind forces

Known R matrix

Mp = —Dv+ R (t)b+ T + Twina + w3

y=n+C,E+e

T = _7A-wind + Buu
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= [y
II%s

p = [uy0, r

Vv (sway) q (pitch)

Y <«—

]T

u (surge)

W (heave)




13.4.6 Case Study: KF for Dynamic Positioning Systems

Model matrices

. o |06><3 O6x3
03x6 | O3x3 03%3

03x6 | O3x3 03%3 03x3
| 03y | 03x3 M'R'(t) —M™'D

E, | 0sx3 Ogxs

O3xs | Is  O3x3
| 0343 | O35 M™!

Discrete-time state-space model (Euler’s method)

x[k + 1] = Aqlk]z]k] + Baulk] + Eqw(k]
y(k| = Cax[k] + e[k]

Ad[k‘]% I15 + hA(tk),
B, ~ hB,
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OGXp
03Xp

03Xp
M~'B,

O3x3 | O3x3 O3x3 &= [ G | I3 O0s3x3 O3x3 ]




13.4.6 Case Study: KF for Dynamic Positioning Systems

Matlab:
Pseudocode showing the computation of the Kalman gain and the corrector-
predictor with ssa modification.

% KF gain: K[k] . .
K = P_prd  Cd' * inv( Cd * P_prd = Cd' + Rd ); / ssa modification for DP

IKC = eye(15) - K % Cd;

% Corrector: x_hat[k] and P_hat[k]

e =y - Cd x x_prd; ¥ estimation error
e(3) = ssa(e(3)); ¥ ssa modification
x_hat x_prd + K * e;

P_hat IKC * P_prd * IKC' + K * Rd * K';

% Predictor: x_prd[k+1l] and P_prd[k+1]
x_prd Ad x* x_hat + Bd *x u;
P_prd Ad x P_hat = Ad' + Ed » Qd = Ed';

Dead reckoning Corrector:
Dead reckoning refers to the case where there are no updates, for instance GNSS posi-
tion and/or compass signal losses for a period of time. During sensor failures, the best
thing to do is to trust the model without any updates. Consequently, the corrector in
the KF is bypassed by setting K[k] = 0 and prediction is based on the system model
only. During dead reckoning (signal loss) the KF must be modified according to

Predictor:

T [k + 1] = Aglk]z[k] + Balk]u[k]
P [k+1] = Ag[k|P[k]A] [k] + Eq[k]Qu[k]E  [k]
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13.5 Passive Observer Design

The drawbacks of the Kalman filter for DP applications are:

It is difficult and time-consuming to tune the KF (stochastic system with 15 states and 120 covariance equations).

The main reason for this is that the numerous covariance tuning parameters may be difficult to relate to physical
guantities. This results in an ad hoc tuning procedure for the process covariance matrix Q while the measurement
covariance matrix R usually is well defined in terms of sensor specifications. only local results

Another drawback with KF-based design techniques is that a relatively large number of parameters must be
determined through experimental testing of the craft

This motivated the research of a nonlinear passivity-based observer, since passivity arguments simplify the tuning
procedure significantly (Fossen and Strand 1999). Hence, the time needed for sea trials and tuning can be drastically
reduced. The nonlinear passive observer, guarantees convergence of all estimation errors (including the bias terms) to
zero. Hence, only one set of observer gains is needed to cover the whole state space. In addition, the number of
observer tuning parameters is significantly reduced and the wave filter parameters are directly coupled to the
dominating wave frequency.

Reference:

Fossen, T. I. and J. P. Strand (1999). Passive Nonlinear Observer Design for Ships Using Lyapunov Methods: Experimental Results with a
Supply Vessel, Automatica, Vol. 35, No. 1, pp. 3-16, January 1999.
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Assumption P1: w = 0 and € = 0. The zero-mean Gaussian white noise terms are
omitted in the deterministic stability analysis of the observer. If they are included
in the Lyapunov function analysis the error dynamics will be uniformly ultimated
bounded (UUB) instead of asymptotical/exponential stable.

Assumption P2: R(v(t)) := R(t) is known for all ¢ > 0. This is a good assumption
since the yaw angle is usually measured by a gyrocompass.

é = Au€
n=R(t)v Vv (sway)

q (pitch)

b=-T"'b
My =—Dv+ R"(t)b+ T + Twind
y=n+Cu§

The matrix T = diag{7T},T5,T5} > 0 of bias time constants is
included as additional tuning parameters to obtain passivity
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Observer requirements:
Total motion, LF + WF

o

® Observer must reconstruct
1n,nwandv fromy

LF motion

® Only 7 and v are used for feedback

WF motion

\\//\\/\\/\\/A\/\\/\\/[\\/A\/\\/\\/[\\//\V/\\/A\/ Position/heading (Earth)

0 50 100 150 n=1[xy,z]"
time

Velocity (Body)
Measurement equation (GNSS + compass)

v=[u, v, r]"
y= 7] + 1]W+ & <+— measurement noise

oA

Low-frequency ~ Wave frequency PSD
motion from the motion generated by
ship model a wave spectrum frecluency
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

é = Awé +
i = R(t)p +(.9)

P

M = —-Dp + RT(t)E)-I—T + Twind

§ =17+ Cyué

wave model
kinematics
bias
dynamics

measurements

GNSS
Compass

Goal: i (" Bias estimator:
choose the gains Ki - wave drift forces

- t
such that the error Gl
dynamics is passive and
exponentially stable,

N
\

’

\

LK)

L
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Wave estimator:
- 1st-order wave-induced motion




13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Observer error dynamics (position and WF models):

o= Coi o
0

A, Opxs
0O3x6 O3x3

|

Observer error dynamics including velocity/bias:

Mo = (Ao — Ko(wo)Co)ny + BoR(t)¥
b=-T"'b— Ky
My =-Dio+R"(t)b— R" () K,3y
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Forming two passive blocks 7/; and 7#/: N s RT(t)fz

e, :=—RT(tz ( /

€.
L i-

R'(1)
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Passivity is a property of engineering systems, most commonly used in electronic engineering and control systems.

A passive component, may be either a component that consumes (but does not produce) energy, or a component that
is incapable of power gain. A component that is not passive is called an active component.

An electronic circuit consisting entirely of passive components is called a passive circuit (and has the same properties
as a passive component).

A transfer functions /(s) must have phase greater than -90° in order to be passive.

Passivity is related to stability and Lyapunov analysis can be used to prove passivity/stability in nonlinear systems while
for linear systems the Kalman-Yakubovich-Popov (KYP) Lemma can be used to prove stability.
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Definition 6.3 (Khalil 2002) A nonlinear system is said to be passive if there exists a continuously
differentiable positive definite function V(x) (called storage function) such that:

uly >V
Moreover, it is said to be

Lossless if uTy =V

Input-feedforward passive if uly > V+ulo(u) for some function ¢(u)
Input strictly passive if uy > V+u"p(u) and u”¢(u) >0, forall u # 0
Output-feedback passive if u’y > V+y"p(y) for some function p(y)
Output strictly passive if uy > V+y"p(y) andy’p(y) >0, forally =0

Strictly passive if uTy > V+ w(x) for some positive definite function y(x)
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Proposition 13.1 (Strictly Passive Velocity Error Dynamics)

The mapping H, is strictly passive.

H, ——

. 1. B
Proof: Let, S, = 5 M

be a positive definite storage function. Time differentiation of S,, yields:

: 1
Sy = —§DT(D + D" -2"R(t)p

: T/1\3
Using the factthat €z -= —R ()2 , yields

o
elb=8+ §f/T(D +D"o

This proves that H, is strictly passive.
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Theorem 6.3 (Khalil 2002) The feedback connection of two time-invariant dynamical systems is
GAS if the origin of the nominal system (u = 0) is asymptotically stable and

both feedback components are strictly passive

both feedback components are output strictly passive and zero-state observable, or

one component is strictly passive, and the other is output strictly passive and zero-state
observable

In addition, the storage function for each component must be radially unbounded

The mappingg, — v s strictly passive (block #,)

Post-multiplication with the bounded transformation matrix RE(t) and pre-
multiplication by it's transpose will not affect the passivity properties.

Hence, it only remains to show that the mapping ¢, — % (block H,) is strictly passive

For linear systems passivity can easily be checked by applying the Kalman-Yakubovich-Popov (KYP) Lemma.
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Lemma 13.1 (Kalman-Yakubovich-Popov)
Let H(s) = C(sI-A)'B be an mxm transfer function matrix, where A is Hurwitz, (A,B) is controllable, and (A, C) is
observable. Then Z(s) is strictly positive real (SPR) if and only if there exist positive definite matrices P=P"and Q = Q"

such that
PA+A'™P=-Q
B'P=cC

Since H., is strictly passive and H.,, given by three matrices (A, B, C) according to

Hzr{ xr = Ax + Be,

z=Cxzx

can be made SPR by choosing the gain matrices K; (i=1,...,4) according to the KYP Lemma. Hence,
according to Lemma 6.4 (Khalil 2002), H., is strictly passive since H, is SPR

‘ Interconnected system H, and H., is GAS
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Determination of the Observer Gains

The mapping H,, describes three decoupled systems in surge, sway, and yaw.

This suggests that the observer gain matrices should have a diagonal structure:

Ki(wo) = | dia81Eun(wo), Kra(wo), K13<wo>% —

N diag{K14(w0), K15(w0), K16(w0)
K, = diag{ K>, K22, Ko3}
Kg = diag{Kgl, K32, K33} Opens for

K= diag{K41, Ko, K43} -gain scheduling
-adaptive observer design

function of the wave frequency.
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Three decoupled transfer functions

H()(S) = C() (813 -+ A() — Ko(wo)CQ)_l B()
Hp(s)= K4+ (sIs+ T ')1K,

H, is determined by using pole placement

s2 + 2 wos + w3
s3 + (Kl(i—l—?)) + K2i + 2)\&)0)82 =1 ((JJ% . 2)\WOK2¢ — Kliwg)s = i Kgiwg

hOi(S) =

82 + 2 wps + w

hai(s) = (82 + 2Cniwos + w?) (s + wes)

Ki(i+3)(wo) = 2wo(Cns — A)

The desired transfer function is low-pass + notch Ko = we;
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

The remaining gains K3 and K, in Hg is found by frequency shaping. The transfer functions h;(s) must all have
phase greater than -90° in order to be passive.
This is satisfied for hi(s) = hf)i(lsl)hllﬁ?lz‘l(s)

30 . —_ —— ————r —_— —
1 1

1
mean wave drift forces, ! | i

i
g bcean currents and wind 14t-order wave forces:
1/T; < K3 /K4 < wo < We; i I W12 0.8976 (rad/s)

i integral
20 - action

Magnitude (dB)

filter

H(s) = Ho(s)Hz(s) “of = = N

s+(%+%) Ti>1
hpi(s) = Ky ——"= =
S+T

i

_ 5222, 0507,
hai (s) = (242 niwois+d; ) (s+oei)
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MSS Simulink: demoCS2passiveObserverDP.slx
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Infrared

The first experiments were performed Camera
in the GNC laboratory at the

Department of Engineering Cybernetics,

NTNU using CyberShip | which is

offshore supply vessel scale 1:70.

—

Cybership |

-2

Wave generator .
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13.5.1 Case Study: Passive Observer for Dynamic
Positioning using GNSS and Compass Measurements

Experimental results: implemented and
tested onboard several ships and rigs
offshore.

Reduced commissioning time: easy to tune
compared to the Extended Kalman Filter.
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13.5.2 Case study: Passive Observer for Heading
Autopilots Using only Compass Measurements

Passivity-Based Pole Placement

The observer error dynamics can be reformulated as two subsystems for yaw angle/rudder bias, and yaw rate. Fossen and
Strand (1999) have shown that these systems forms a passive interconnection if the observer gains are chosen according to

—9(1— N
2wo(1— A) 0<1/Ty < Ks/Ky < wp < we

k= We
K,

N . i
mean wave drift forces,

K 5 currents. wind 1st-order wave lgads:

| W, = 0.8976 (rad/s)

S NS

where @¢ > o is the filter cut-off frequency integral

- action

Ew = Y & Ky Ssa(y = ww) T notch-" | /‘Iow-pass

A 2 (8 i S ror eﬁ:e?tv vuui§ L firlt?rv.vvvvi
— w _2)\w0¢w +K2 Ssa(y_d) _¢w) :

§

7+ K3 ssa(y —1/;—7,2)10)
..., |
Tt

n
o

Magnitude (dB)

(Twmd o TN) + b + Ky SS&(

3 1 x % 7
b ——b+K5ssa(y—7,Z)—ww)
5
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13.5.2 Case study: Passive Observer for Heading
Autopilots Using only Compass Measurements

Example 13.6 (Passive Wave Filtering)

Consider the Mariner class cargo ship with K =0.185 s' and =T, + T, -T;=107.3 s (Strem-Tejsen 1965). The bias

time constant is chosen to be rather large, that is 7;,= 100 s. The wave response model is modeled by a linear
approximation to the JONSWAP spectrum with A = 0.1and @o = 1.2 rad/s.

State-space model

=)
S

=~

[
ol L

bo

=~

wave-frequency
model

=]

oo T o B coms o
=)

ship + bias models

o
[\
=~
Q

¢’ =1[0,1,1,0,0]

o O O
o= Ol 0o o
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13.5.2 Case study: Passive Observer for Heading
Autopilots Using only Compass Measurements

Example 13.6 (Passive Wave Filtering, cont.)
Using passivity as a tool for filter design with cut-off frequency @. = 1. 1o, yields:

i, e Bode Diagram
K, —2(1 - \)ee —1.98
2(4.)0(1 — A) 1-80 UJO | 1 h3=\l‘ly

_ — - hz=rly
We = | 1.10wyg — h=yfy
K4 K4

K Ks Ks

- JONSWAP ( 6=10)

-
-~
-~

Magnitude (dB)

-~

Note that the notch effect at @¢ is more than -20 dB for hs(s)
and hy(s) representing the state estimates y and . We also see
that high-frequency motion components above @, is low-pass
filtered. Finally, the transfer function h,(s) representing
reconstruction of the WF motion W filters out signals on the
outside of the wave response spectrum.

©
o

Phase (deg)

o

2
10
Frequency (rad/sec)

Bode plot showing the wave filter transfer functions and
the JONSWAP spectrum.
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13.5.2 Case study: Passive Observer for Heading
Autopilots Using only Compass Measurements

v, and estimated v, 4 and d,
5 : 80

60 M,

aoff - A

207,

0 B B

50 100
time (s)

y=y+Vy,, and estimated y

. 100
time (s)
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13.5.3 Case study: Passive Observer for Heading
Autopilots Using both Compass and Angular Rate

Sensor Measurements

It is advantageous to integrate gyro and compass
measurements in the observer. This results in less
variance and better accuracy of the state estimates. One
simple way to do this is to treat the gyro measurements as
an input to the system model

"b = Bl D

where b, denotes the gyro bias and u, is the ARS
measurement.

This model will give proper wave filtering of the state .
However, the estimate of r is not wave filtered, since this
signal is taken directly from the gyro measurement ugy .
This can be solved by filtering g, with a notch filter
hootcn(s) and a low-pass filter to the cost of some phase lag
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éw =5 'Jjw +Klssa(y_d; _Jjw)
'&w — _wgéw - 2AWO"&w == KQ Ssa(y - 1& - &w)

"; =uf + i)ars + K3 Ssa'(y — "; — ";w)
—
15

A A

Bars + Ky Ssa(y — "b - '¢w)

S
bars =

Tb >0
—2(1 — )\):)—);‘

ur = s (3) hlp(s) Uars




MSS Simulink: demoPassiveWavefilterAutopilotl.slx
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13.5.3 Case study: Passive Observer for Heading
Autopilots Using both Compass and Angular Rate
Sensor Measurements

The wave filter has been tested on a scale model of MV
Autoprestige of the United European Car Carriers (UECC)

The maneuvering test were performed in the
Ocean Basin at MARINTEK in Trondheim April 2001.
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13.5.3 Case study: Passive Observer for Heading
Autopilots Using both Compass and Angular Rate
Sensor Measurements

It is seen that the WF motion components are
quite well removed from the estimate of
resulting in good course-keeping capabilities.

Significant wave height: H;=1.3 m (full scale)
Frequency of encounter: @, = 1.07 rad/s
Cruise speed: U = 2.3 m/s (model scale)

Course-keeping maneuver

We also notice that the estimate of v/, is v
quite good, while r could be slightly improved
by changing the observer gains.
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MSS Simulink: demoPassiveWavefilterAutopilot2.slx
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Chapter Goals — Revisited

Sensors for marine craft:
Understand the principles for GNSS position, GNSS heading, magnetic compass and
gyrocompass

Understand what we mean with wave filtering and when to apply a wave filter algorithm
Be able to estimate the wave encounter frequency of a marine craft

Model-based state estimation:
Understand the principles and design methods for fixed-gain Luenberger observers, Kalman
filters and passive observers
Be able to model marine craft under DP and heading control, and include dynamic models of the
sensor and navigation systems using realistic measurement noise
Be able to design Kalman filters for DP and heading autopilots with wave filtering capabilities
Be able to design passive observers for DP and heading autopilots with wave filtering capabilities
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