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Abstract

Active learning promises to improve annotation efficiency by iteratively selecting
the most important data to be annotated first. However, we uncover a striking
contradiction to this promise: active learning fails to select data as efficiently
as random selection at the first few choices. We identify this as the cold start
problem in vision active learning, caused by a biased and outlier initial query. This
paper seeks to address the cold start problem by exploiting the three advantages of
contrastive learning: (1) no annotation is required; (2) label diversity is ensured
by pseudo-labels to mitigate bias; (3) typical data is determined by contrastive
features to reduce outliers. Experiments are conducted on CIFAR-10-LT and three
medical imaging datasets (i.e. Colon Pathology, Abdominal CT, and Blood Cell
Microscope). Our initial query not only significantly outperforms existing active
querying strategies but also surpasses random selection by a large margin. We
foresee our solution to the cold start problem as a simple yet strong baseline to
choose the initial query for vision active learning.
Code is available: https://github.com/c-liangyu/CSVAL

1 Introduction

“The secret of getting ahead is getting started.”

— Mark Twain

The cold start problem was initially found in recommender systems [56, 39, 9, 23] when algorithms
had not gathered sufficient information about users with no purchase history. It also occurred in many
other fields, such as natural language processing [55, 33] and computer vision [5, 11, 38] during the
active learning procedure1. Active learning promises to improve annotation efficiency by iteratively
selecting the most important data to annotate. However, we uncover a striking contradiction to this
promise: Active learning fails to select data as effectively as random selection at the first choice. We
identify this as the cold start problem in vision active learning and illustrate the problem using three
medical imaging applications (Figure 1a–c) as well as a natural imaging application (Figure 1d). Cold
start is a crucial topic [54, 30] because a performant initial query can lead to noticeably improved
subsequent cycle performance in the active learning procedure, evidenced in §3.3. There is a lack
of studies that systematically illustrate the cold start problem, investigate its causes, and provide
practical solutions to address it. To this end, we ask: What causes the cold start problem and how
can we select the initial query when there is no labeled data available?
∗Corresponding author: Zongwei Zhou (zzhou82@jh.edu)
1Active learning aims to select the most important data from the unlabeled dataset and query human experts

to annotate new data. The newly annotated data is then added to improve the model. This process can be repeated
until the model reaches a satisfactory performance level or the annotation budget is exhausted.
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(a) PathMNIST (b) OrganAMNIST

(c) BloodMNIST (d) CIFAR-10

BALD (Kirsch et al., 2019) Consistency (Gao et al., 2020)

Margin (Balcan et al., 2007) VAAL (Sinha et al., 2019)

Coreset (Sener et al., 2017) Random

Entropy (Wang et al., 2014)

Figure 1: Cold start problem in vision active learning. Most existing active querying strategies
(e.g. BALD, Consistency, etc.) are outperformed by random selection in selecting initial queries,
since random selection is i.i.d. to the entire dataset. However, some classes are not selected by active
querying strategies due to selection bias, so their results are not presented in the low budget regime.

Random selection is generally considered a baseline to start the active learning because the randomly
sampled query is independent and identically distributed (i.i.d.) to the entire data distribution. As is
known, maintaining a similar distribution between training and test data is beneficial, particularly
when using limited training data [25]. Therefore, a large body of existing work selects the initial query
randomly [10, 61, 55, 62, 18, 17, 42, 24, 22, 60], highlighting that active querying compromises
accuracy and diversity compared to random sampling at the beginning of active learning [36, 63, 44,
11, 20, 59]. Why? We attribute the causes of the cold start problem to the following two aspects:

(i) Biased query: Active learning tends to select data that is biased to specific classes. Empirically,
Figure 2 reveals that the class distribution in the selected query is highly unbalanced. These active
querying strategies (e.g. Entropy, Margin, VAAL, etc.) can barely outperform random sampling at
the beginning because some classes are simply not selected for training. It is because data of the
minority classes occurs much less frequently than those of the majority classes. Moreover, datasets
in practice are often highly unbalanced, particularly in medical images [32, 58]. This can escalate
the biased sampling. We hypothesize that the label diversity of a query is an important criterion to
determine the importance of the annotation. To evaluate this hypothesis theoretically, we explore
the upper bound performance by enforcing a uniform distribution using ground truth (Table 1) To
evaluate this hypothesis practically, we pursue the label diversity by exploiting the pseudo-labels
generated by K-means clustering (Table 2). The label diversity can reduce the redundancy in the
selection of majority classes, and increase the diversity by including data of minority classes.

(ii) Outlier query: Many active querying strategies were proposed to select typical data and eliminate
outliers, but they heavily rely on a trained classifier to produce predictions or features. For example,
to calculate the value of Entropy, a trained classifier is required to predict logits of the data. However,
there is no such classifier at the start of active learning, at which point no labeled data is available
for training. To express informative features for reliable predictions, we consider contrastive
learning, which can be trained using unlabeled data only. Contrastive learning encourages models to
discriminate between data augmented from the same image and data from different images [15, 13].
Such a learning process is called instance discrimination. We hypothesize that instance discrimination
can act as an alternative to select typical data and eliminate outliers. Specifically, the data that
is hard to discriminate from others could be considered as typical data. With the help of Dataset
Maps [48, 26]2, we evaluate this hypothesis and propose a novel active querying strategy that can
effectively select typical data (hard-to-contrast data in our definition, see §2.2) and reduce outliers.

2It is worthy noting that both [48] and [26] conducted a retrospective study, which analyzed existing active
querying strategies by using the ground truth. As a result, the values of confidence and variability in the Dataset
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Systematic ablation experiments and qualitative visualizations in §3 confirm that (i) the level of label
diversity and (ii) the inclusion of typical data are two explicit criteria for determining the annotation
importance. Naturally, contrastive learning is expected to approximate these two criteria: pseudo-
labels in clustering implicitly enforce label diversity in the query; instance discrimination determines
typical data. Extensive results show that our initial query not only significantly outperforms existing
active querying strategies, but also surpasses random selection by a large margin on three medical
imaging datasets (i.e. Colon Pathology, Abdominal CT, and Blood Cell Microscope) and two natural
imaging datasets (i.e. CIFAR-10 and CIFAR-10-LT). Our active querying strategy eliminates the
need for manual annotation to ensure the label diversity within initial queries, and more importantly,
starts the active learning procedure with the typical data.

To the best of our knowledge, we are among the first to indicate and address the cold start problem in
the field of medical image analysis (and perhaps, computer vision), making three contributions: (1)
illustrating the cold start problem in vision active learning, (2) investigating the underlying causes
with rigorous empirical analysis and visualization, and (3) determining effective initial queries for the
active learning procedure. Our solution to the cold start problem can be used as a strong yet simple
baseline to select the initial query for image classification and other vision tasks.

Related work. When the cold start problem was first observed in recommender systems, there were
several solutions to remedy the insufficient information due to the lack of user history [63, 23]. In
natural language processing (NLP), Yuan et al. [55] were among the first to address the cold start
problem by pre-training models using self-supervision. They attributed the cold start problem to
model instability and data scarcity. Vision active learning has shown higher performance than random
selection [61, 47, 18, 2, 43, 34, 62], but there is limited study discussing how to select the initial query
when facing the entire unlabeled dataset. A few studies somewhat indicated the existence of the cold
start problem: Lang et al. [30] explored the effectiveness of the K-center algorithm [16] to select the
initial queries. Similarly, Pourahmadi et al. [38] showed that a simple K-means clustering algorithm
worked fairly well at the beginning of active learning, as it was capable of covering diverse classes
and selecting a similar number of data per class. Most recently, a series of studies [20, 54, 46, 37]
continued to propose new strategies for selecting the initial query from the entire unlabeled data
and highlighted that typical data (defined in varying ways) could significantly improve the learning
efficiency of active learning at a low budget. In addition to the existing publications, our study
justifies the two causes of the cold start problem, systematically presents the existence of the problem
in six dominant strategies, and produces a comprehensive guideline of initial query selection.

2 Method

In this section, we analyze in-depth the cause of cold start problem in two perspectives, biased query as
the inter-class query and outlier query as the intra-class factor. We provide a complementary method
to select the initial query based on both criteria. §2.1 illustrates that label diversity is a favourable
selection criterion, and discusses how we obtain label diversity via simple contrastive learning and
K-means algorithms. §2.2 describes an unsupervised method to sample atypical (hard-to-contrast)
queries from Dataset Maps.

2.1 Inter-class Criterion: Enforcing Label Diversity to Mitigate Bias

K-means clustering. The selected query should cover data of diverse classes, and ideally, select
similar number of data from each class. However, this requires the availability of ground truth, which
are inaccessible according to the nature of active learning. Therefore, we exploit pseudo-labels
generated by a simple K-means clustering algorithm and select an equal number of data from each
cluster to form the initial query to facilitate label diversity. Without knowledge about the exact
number of ground-truth classes, over-clustering is suggested in recent works [51, 57] to increase
performances on the datasets with higher intra-class variance. Concretely, given 9, 11, 8 classes in
the ground truth, we set K (the number of clusters) to 30 in our experiments.

Contrastive features. K-means clustering requires features of each data point. Li et al. [31]
suggested that for the purpose of clustering, contrastive methods (e.g. MoCo, SimCLR, BYOL) are

Maps could not be computed under the practical active learning setting because the ground truth is a priori
unknown. Our modified strategy, however, does not require the availability of ground truth (detailed in §2.2).
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Random Consistency VAAL Margin Entropy Coreset BALD

adipose
background

debris

epithelium

lymphocytes
mucus

mucosa
muscle

stroma

Ours

Entropy 3.154 3.116 2.800 2.858 2.852 3.0943.006 3.122

Figure 2: Label diversity of querying criteria. Random, the leftmost strategy, denotes the class
distribution of randomly queried samples, which can also reflect the approximate class distribution of
the entire dataset. As seen, even with a relatively larger initial query budget (40,498 images, 45%
of the dataset), most active querying strategies are biased towards certain classes in the PathMNIST
dataset. For example, VAAL prefers selecting data in the muscle class, but largely ignores data in the
mucus and mucosa classes. On the contrary, our querying strategy selects more data from minority
classes (e.g., mucus and mucosa) while retaining the class distribution of major classes. Similar
observations in OrganAMNIST and BloodMNIST are shown in Appendix Figure 7. The higher the
entropy is, the more balanced the class distribution is.

more suitable than generative methods (e.g. colorization, reconstruction) because the contrastive
feature matrix can be naturally regarded as cluster representations. Therefore, we use MoCo v2 [15]—
a popular self-supervised contrastive method—to extract image features.

K-means and MoCo v2 are certainly not the only choices for clustering and feature extraction. We
employ these two well-received methods for simplicity and efficacy in addressing the cold start
problem. Figure 2 shows our querying strategy can yield better label diversity than other six dominant
active querying strategies; similar observations are made in OrganAMNIST and BloodMNIST
(Figure 7) as well as CIFAR-10 and CIFAR-10-LT (Figure 10).

2.2 Intra-class Criterion: Querying Hard-to-Contrast Data to Avoid Outliers

Dataset map. Given K clusters generated from Criterion #1, we now determine which data points
ought to be selected from each cluster. Intuitively, a data point can better represent a cluster
distribution if it is harder to contrast itself with other data points in this cluster—we consider them
typical data. To find these typical data, we modify the original Dataset Map3 by replacing the ground
truth term with a pseudo-label term. This modification is made because ground truths are unknown in
the active learning setting but pseudo-labels are readily accessible from Criterion #1. For a visual
comparison, Figure 3b and Figure 3c present the Data Maps based on ground truths and pseudo-labels,
respectively. Formally, the modified Data Map can be formulated as follows. Let D = {xm}Mm=1
denote a dataset of M unlabeled images. Considering a minibatch of N images, for each image xn,
its two augmented views form a positive pair, denoted as x̃i and x̃j . The contrastive prediction task
on pairs of augmented images derived from the minibatch generate 2N images, in which a true label
y∗n for an anchor augmentation is associated with its counterpart of the positive pair. We treat the
other 2(N − 1) augmented images within a minibatch as negative pairs. We define the probability of
positive pair in the instance discrimination task as:

pi,j =
exp(sim(zi, zj))/τ∑2N

n=1 1[n6=i] exp(sim(zi, zn))/τ
, (1)

pθ(e)(y
∗
n|xn) =

1

2
[p2n−1,2n + p2n,2n−1], (2)

where sim(u, ) = u>v/‖u‖‖v‖ is the cosine similarity between u and v; z2n−1 and z2n denote the
projection head output of a positive pair for the input xn in a batch; 1[n 6=i] ∈ {0, 1} is an indicator

3Dataset Map [12, 48] was proposed to analyze datasets by two measures: confidence and variability, defined
as the mean and standard deviation of the model probability of ground truth along the learning trajectory.
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(a) Overall distribution

Easy-to-learn

Hard-to-learn

Easy-to-contrast

Hard-to-contrast

(b) Data Map by ground truth (c) Data Map by pseudo-labels

basophil
eosinophil
erythroblast

lymphocyte
monocyte
neutrophil

ig
platelet

Figure 3: Active querying based on Dataset Maps. (a) Dataset overview. (b) Easy- and hard-to-
learn data can be selected from the maps based on ground truths [26]. This querying strategy has
two limitations: it requires manual annotations and the data are stratified by classes in the 2D space,
leading to a poor label diversity in the selected queries. (c) Easy- and hard-to-contrast data can be
selected from the maps based on pseudo-labels. This querying strategy is label-free and the selected
hard-to-contrast data represent the most common patterns in the entire dataset, as presented in (a).
These data are more suitable for training, and thus alleviate the cold start problem.

function evaluating to 1 iff n 6= i and τ denotes a temperature parameter. θ(e) denotes the parameters
at the end of the eth epoch. We define confidence (µ̂m) across E epochs as:

µ̂m =
1

E

E∑
e=1

pθ(e)(y
∗
m|xm). (3)

The confidence (µ̂m) is the Y-axis of the Dataset Maps (see Figure 3b-c).

Hard-to-contrast data. We consider the data with a low confidence value (Equation 3) as “hard-to-
contrast” because they are seldom predicted correctly in the instance discrimination task. Apparently,
if the model cannot distinguish a data point with others, this data point is expected to carry typical
characteristics that are shared across the dataset [40]. Visually, hard-to-contrast data gather in the
bottom region of the Dataset Maps and “easy-to-contrast” data gather in the top region. As expected,
hard-to-learn data are more typical, possessing the most common visual patterns as the entire dataset;
whereas easy-to-learn data appear like outliers [54, 26], which may not follow the majority data
distribution (examples in Figure 3a and Figure 3c). Additionally, we also plot the original Dataset
Map [12, 48] in Figure 3b, which grouped data into hard-to-learn and easy-to-learn4. Although
the results in §3.2 show equally compelling performance achieved by both easy-to-learn [48] and
hard-to-contrast data (ours), the latter do not require any manual annotation, and therefore are more
practical and suitable for vision active learning.

In summary, to meet the both criteria, our proposed active querying strategy includes three steps:
(i) extracting features by self-supervised contrastive learning, (ii) assigning clusters by K-means
algorithm for label diversity, and (iii) selecting hard-to-contrast data from dataset maps.

3 Experimental Results

Datasets & metrics. Active querying strategies have a selection bias that is particularly harmful
in long-tail distributions. Therefore, unlike most existing works [38, 54], which tested on highly
balanced annotated datasets, we deliberately examine our method and other baselines on long-
tail datasets to simulate real-world scenarios. Three medical datasets of different modalities

4Swayamdipta et al. [48] indicated that easy-to-learn data facilitated model training in the low budget regime
because easier data reduced the confusion when the model approaching the rough decision boundary. In essence,
the advantage of easy-to-learn data in active learning aligned with the motivation of curriculum learning [6].
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Table 1: Diversity is a significant add-on to most querying strategies. AUC scores of different
querying strategies are compared on three medical imaging datasets. In either low budget (i.e. 0.5%
or 1% of MedMNIST datasets) or high budget (i.e. 10% or 20% of CIFAR-10-LT) regimes, both
random and active querying strategies benefit from enforcing the label diversity of the selected data.
The cells are highlighted in blue when adding diversity performs no worse than the original querying
strategies. Coreset [41] works very well as its original form because this querying strategy has
implicitly considered the label diversity (also verified in Table 2) by formulating a K-center problem,
which selects K data points to represent the entire dataset. Some results are missing (marked as “-”)
because the querying strategy fails to sample at least one data point for each class. Results of more
sampling ratios are presented in Appendix Figures 6, 9.

PathMNIST OrganAMNIST BloodMNIST CIFAR-10-LT
0.5% 1% 0.5% 1% 0.5% 1% 10% 20%

Unif. (499) (899) (172) (345) (59) (119) (1420) (2841)

Random 3 96.8±0.6 97.6±0.6 91.1±0.9 93.3±0.4 94.7±0.7 96.5±0.4 91.6±1.1 93.1±0.6
7 96.4±1.3 97.6±0.9 90.7±1.1 93.1±0.7 93.2±1.5 95.8±0.7 62.0±6.1 -

Consistency 3 96.4±0.1 97.9±0.1 92.3±0.5 92.8±1.0 92.9±0.9 95.9±0.5 91.4±1.1 93.4±0.2
7 96.2±0.0 97.6±0.0 91.0±0.3 94.0±0.6 87.9±0.2 95.5±0.5 67.1±17.1 88.6±0.3

VAAL 3 92.7±0.5 93.0±0.6 70.6±1.9 84.6±0.5 89.8±1.3 93.4±0. 9 92.6±0.2 93.7±0.4
7 - - - - - - - -

Margin 3 97.9±0.2 96.0±0.4 81.8±1.2 85.8±1.4 89.7±1.9 94.7±0.7 91.7±0.9 93.2±0.2
7 91.0±2.3 96.0±0.3 - 85.9±0.7 - - 81.9±0.8 86.3±0.3

Entropy 3 93.2±1.6 95.2±0.2 79.1±2.3 86.7±0.8 85.9±0.5 91.8±1.0 92.0±1.2 91.9±1.3
7 - 87.5±0.1 - - - - 65.6±15.6 86.4±0.2

Coreset 3 95.0±2.2 94.8±2.5 85.6±0.4 89.9±0.5 88.5±0.6 94.1±1.1 91.5±0.4 93.6±0.2
7 95.6±0.7 97.5±0.2 83.8±0.6 88.5±0.4 87.3±1.6 94.0±1.2 65.9±15.9 86.9±0.1

BALD 3 95.8±0.2 97.0±0.1 87.2±0.3 89.2±0.3 89.9±0.8 92.7±0.7 92.8±0.1 90.8±2.4
7 92.0±2.3 95.3±1.0 - - 83.3±2.2 93.5±1.3 64.9±14.9 84.7±0.6

Table 2: Class coverage of selected data. Compared with random selection (i.i.d. to entire data
distribution), most active querying strategies contain selection bias to specific classes, so the class
coverage in their selections might be poor, particularly using low budgets. As seen, using 0.002% or
even smaller proportion of MedMNIST datasets, the class coverage of active querying strategies is
much lower than random selection. By integrating K-means clustering with contrastive features, our
querying strategy is capable of covering 100% classes in most scenarios using low budgets (≤0.002%
of MedMNIST). We also found that our querying strategy covers the most of the classes in the
CIFAR-10-LT dataset, which is designatedly more imbalanced.

PathMNIST OrganAMNIST BloodMNIST CIFAR-10-LT
0.00015% 0.00030% 0.001% 0.002% 0.001% 0.002% 0.2% 0.3%

(13) (26) (34) (69) (11) (23) (24) (37)
Random 0.79±0.11 0.95±0.07 0.91±0.08 0.98±0.04 0.70±0.13 0.94±0.08 0.58±0.10 0.66±0.12
Consistency 0.78 0.88 0.82 0.91 0.75 0.88 0.50 0.70
VAAL 0.11 0.11 0.18 0.18 0.13 0.13 0.30 0.30
Margin 0.67 0.78 0.73 0.82 0.63 0.75 0.60 0.70
Entropy 0.33 0.33 0.45 0.73 0.63 0.63 0.40 0.70
Coreset 0.66 0.78 0.91 1.00 0.63 0.88 0.60 0.70
BALD 0.33 0.44 0.64 0.64 0.75 0.88 0.60 0.70
Ours 0.78 1.00 1.00 1.00 1.00 1.00 0.70 0.80

in MedMNIST [53] are used: PathMNIST (colorectal cancer tissue histopathological images),
BloodMNIST (microscopic peripheral blood cell images), OrganAMNIST (axial view abdominal
CT images of multiple organs). OrganAMNIST is augmented following Azizi et al. [3], while the
others following Chen et al. [15]. Area Under the ROC Curve (AUC) and Accuracy are used as the
evaluation metrics. All results were based on at least three independent runs, and particularly, 100
independent runs for random selection. UMAP [35] is used to analyze feature clustering results.

Baselines & implementations. We benchmark a total of seven querying strategies: (1) random
selection, (2) Max-Entropy [52], (3) Margin [4], (4) Consistency [18], (5) BALD [28], (6) VAAL [45],
and (7) Coreset [41]. For contrastive learning, we trained 200 epochs with MoCo v2, following its
default hyperparameter settings. We set τ to 0.05 in equation 2. To reproduce the large batch size and
iteration numbers in [13], we apply repeated augmentation [21, 49, 50] (detailed in Table 5). More
baseline and implementation details can be found in Appendix A.
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Easy-to-learn Hard-to-learn Easy-to-contrast Hard-to-contrast

(a) PathMNIST (b) OrganAMNIST (c) BloodMNIST (d) CIFAR-10-LT

Figure 4: Quantitative comparison of map-based querying strategies. Random selection (dot-
lines) can be treated as a highly competitive baseline in cold start because it outperforms six popular
active querying strategies as shown in Figure 1. In comparison with random selection and three other
querying strategies, hard-to-contrast performs the best. Although easy-to-learn and hard-to-learn
sometimes performs similarly to hard-to-contrast, their selection processes require ground truths [26],
which are not available in the setting of active learning.

3.1 Contrastive Features Enable Label Diversity to Mitigate Bias

Label coverage & diversity. Most active querying strategies have selection bias towards specific
classes, thus the class coverage in their selections might be poor (see Table 2), particularly at low
budgets. By simply enforcing label diversity to these querying strategies can significantly improve
the performance (see Table 1), which suggests that the label diversity is one of the causes that existing
active querying strategies perform poorer than random selection.

Our proposed active querying strategy, however, is capable of covering 100% classes in most low
budget scenarios (≤0.002% of full dataset) by integraing K-means clustering with contrastive
features.

3.2 Pseudo-labels Query Hard-to-Contrast Data and Avoid Outliers

Hard-to-contrast data are practical for cold start problem. Figure 4 presents the quantitative
comparison of four map-based querying strategies, wherein easy- or hard-to-learn are selected by the
maps based on ground truths, easy- or hard-to-contrast are selected by the maps based on pseudo-
labels. Note that easy- or hard-to-learn are enforced with label diversity, due to their class-stratified
distributions in the projected 2D space (illustrated in Figure 3). Results suggest that selecting
easy-to-learn or hard-to-contrast data contribute to the optimal models. In any case, easy- or hard-to-
learn data can not be selected without knowing ground truths, so these querying strategies are not
practical for active learning procedure. Selecting hard-to-contrast, on the other hand, is a label-free
strategy and yields the highest performance amongst existing active querying strategies (reviewed
in Figure 1). More importantly, hard-to-contrast querying strategy significantly outperforms random
selection by 1.8% (94.14%±1.0% vs. 92.27%±2.2%), 2.6% (84.35%±0.7% vs. 81.75%±2.1%),
and 5.2% (88.51%±1.5% vs. 83.36%±3.5%) on PathMNIST, OrganAMNIST, and BloodMNIST,
respectively, by querying 0.1% of entire dataset. Similarly on CIFAR-10-LT, hard-to-contrast
significantly outperforms random selection by 21.2% (87.35%±0.0% vs. 66.12%±0.9%) and 24.1%
(90.59%±0.1% vs. 66.53%±0.5%) by querying 20% and 30% of entire dataset respectively. Note
that easy- or hard-to-learn are not enforced with label diversity, for a more informative comparison.

3.3 On the Importance of Selecting Superior Initial Query

A good start foresees improved active learning. We stress the importance of the cold start problem
in vision active learning by conducting correlation analysis. Starting with 20 labeled images as the
initial query, the training set is increased by 10 more images in each active learning cycle. Figure 14a
presents the performance along the active learning (each point in the curve accounts for 5 independent
trials). The initial query is selected by a total of 9 different strategies5, and subsequent queries are

5Hard-to-learn is omitted because it falls behind other proposed methods by a large margin (Figure 4).
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Figure 5: On the importance of selecting a superior initial query. Hard-to-contrast data (red lines)
outperform other initial queries in every cycle of active learning on OrganaMNIST. We find that the
performance of the initial cycle (20 images) and the last cycle (50 images) are strongly correlated.

selected by 5 different strategies. AUCn denotes the AUC score achieved by the model that is trained
by n labeled images. The Pearson correlation coefficient between AUC20 (starting) and AUC50

(ending) shows strong positive correlation (r = 0.79, 0.80, 0.91, 0.67, 0.92 for random selection,
Entropy, Margin, BALD, and Coreset, respectively). This result is statistically significant (p <
0.05). Hard-to-contrast data (our proposal) consistently outperforms the others on OrganAMNIST
(Figure 5), BloodMNIST (Figure 13), and PathMNIST (Figure 14), and steadily improves the model
performances within the next active learning cycles.

The initial query is consequential regardless of model initialization. A pre-trained model can
improve the performance of each active learning cycle for both random and active selection [55], but
the cold start problem remains (evidenced in Figure 14b). This suggests that the model instability
and data scarcity are two independent issues to be addressed for the cold start problem. Our “hard-to-
contrast” data selection criterion only exploits contrastive learning (an improved model), but also
determines the typical data to be annotated first (a better query). As a result, when fine-tuning from
MoCo v2, the Pearson correlation coefficient between AUC20 and AUC50 remains high (r = 0.92,
0.81, 0.70, 0.82, 0.85 for random selection, Entropy, Margin, BALD, and Coreset, respectively) and
statistically significant (p < 0.05).

4 Conclusion

This paper systematically examines the causes of the cold start problem in vision active learning and
offers a practical and effective solution to address this problem. Analytical results indicate that (1)
the level of label diversity and (2) the inclusion of hard-to-contrast data are two explicit criteria to
determine the annotation importance. To this end, we devise a novel active querying strategy that can
enforce label diversity and determine hard-to-contrast data. The results of three medical imaging and
two natural imaging datasets show that our initial query not only significantly outperforms existing
active querying strategies but also surpasses random selection by a large margin. This finding is
significant because it is the first few choices that define the efficacy and efficiency of the subsequent
learning procedure. We foresee our solution to the cold start problem as a simple, yet strong, baseline
to sample the initial query for active learning in image classification.

Limitation. This study provides an empirical benchmark of initial queries in active learning, while
more theoretical analyses can be provided. Yehuda et al. [54] also found that the choice of active
learning strategies depends on the initial query budget. A challenge is to articulate the quantity of
determining active learning strategies, which we leave for future work.
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Potential societal impacts. Real-world data often exhibit long-tailed distributions, rather than the
ideal uniform distributions over each class. We improve active learning by enforcing label diversity
and hard-to-contrast data. However, we only extensively test our strategies on academic datasets.
In many other real-world domains such as robotics and autonomous driving, the data may impose
additional constraints on annotation accessibility or learning dynamics, e.g., being fair or private. We
focus on standard accuracy and AUC as our evaluation metrics while ignoring other ethical issues in
imbalanced data, especially in underrepresented minority classes.
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A Implementation Configurations

A.1 Data Split

PathMNIST with nine categories has 107,180 colorectal cancer tissue histopathological images
extracted from Kather et al. [27], with 89,996/10,004/7,180 images for training/validation/testing.
BloodMNIST contains 17,092 microscopic peripheral blood cell images extracted from Acevedo et
al. [1] with eight categories, where 11,959/1,712/3,421 images for training/validation/testing.
OrganAMNIST consists of the axial view abdominal CT images based on Bilic et al. [8], with
34,581/6,491/17,778 images of 11 categories for training/validation/testing. CIFAR-10-LT (ρ=100)
consists of a subset of CIFAR-10 [29], with 12,406/10,000 images for training/testing.

A.2 Training Recipe for Contrastive Learning

Pseudocode for Our Proposed Strategy. The algorithm 1 provides the pseudocode for our proposed
hard-to-contrast initial query strategy, as elaborated in §2.

Algorithm 1: Active querying hard-to-contrast data
input:
D = {xm}Mm=1 {unlabeled dataset D contains M images}
annotation budget B; the number of clusters K; batch size N ; the number of epochs E
constant τ ; structure of encoder f , projection head g; augmentation T
θ(e), e ∈ [1, E] {model parameters at epoch e during contrastive learning}

output:
selected query Q
Q = ∅
for epoch e ∈ {1, . . . , E} do

for sampled minibatch {xn}Nn=1 do
for all n ∈ {1, . . . , N} do

draw two augmentation functions t∼T , t′∼T
# the first augmentation
x̃2n−1 = t(xn)
h2n−1 = f(x̃2n−1) # representation
z2n−1 = g(h2n−1) # projection
# the second augmentation
x̃2n = t′(xn)
h2n = f(x̃2n) # representation
z2n = g(h2n) # projection

end for
for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do
si,j = z>i zj/(‖zi‖‖zj‖) # pairwise similarity
pi,j =

exp(si,j)/τ∑2N
n=1 1[n 6=i] exp(si,n)/τ

# predicted probability of contrastive pre-text task
end for
pθ(e)(y

∗
n|xn) = 1

2 [p2n−1,2n + p2n,2n−1]
end for

end for
for unlabeled images {xm}Mm=1 do
µ̂m = 1

E

∑E
e=1 pθ(e)(y

∗
m|xm)

Assign xm to one of the clusters computed by K-mean(h, K)
end for
for all k ∈ {1, . . . ,K} do

sort images in the cluster K based on µ̂ in an ascending order
query labels for top B/K samples, yielding Qk
Q = Q∪Qk

end for
return Q
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Table 3: Contrastive learning settings on MedMNIST and CIFAR-10-LT.

(a) MedMNIST pre-training

config value
backbone ResNet-50
optimizer SGD
optimizer momentum 0.9
weight decay 1e-4
base learning rate† 0.03
learning rate schedule cosine decay
warmup epochs 5
epochs 200
repeated sampling [21] see Table 5
augmentation see Table 4
batch size 4096
queue length [15] 65536
τ (equation 1) 0.05

(b) CIFAR-10-LT pre-training

config value
backbone ResNet-50
optimizer SGD
optimizer momentum 0.9
weight decay 1e-4
base learning rate† 0.03
learning rate schedule cosine decay
warmup epochs 5
epochs 800
repeated sampling [21] none
augmentation see Table 4
batch size 512
queue length [15] 4096
τ (equation 1) 0.05

†lr = base_lr×batchsize / 256 per the linear lr scaling rule [19].

Table 4: Data augmentations.

(a) Augmentations for RGB images

augmentation value
hflip
crop [0.08, 1]
color jitter [0.4, 0.4, 0.4, 0.1], p=0.8
gray scale
Gaussian blur σmin=0.1, σmax=2.0, p=0.5

(b) Augmentations for OrganAMNIST

augmentation value
hflip
crop [0.08, 1]
color jitter [0.4, 0.4, 0.4, 0.1], p=0.8
rotation degrees=45

Pre-training Settings. Our settings mostly follow [15, 14]. Table 3a summarizes our contrastive
pre-training settings on MedMNIST, following [15]. Table 3a shows the corresponding pre-training
settings on CIFAR-10-LT, following the official MoCo demo on CIFAR-10 [14]. The contrastive
learning model is pre-trained on 2 NVIDIA RTX3090 GPUs with 24GB memory each. The
total number of model parameters is 55.93 million, among which 27.97 million requires gradient
backpropagation.

Dataset Augmentation. We apply the same augmentation as in MoCo v2 [15] on all the images of
RGB modalities to reproduce the optimal augmentation pipeline proposed by the authors, including
PathMNIST, BloodMNIST, CIFAR-10-LT. Because OrganAMNIST is a grey scale CT image dataset,
we apply the augmentation in [3] designed for radiological images, replacing random gray scale and
Gaussian blur with random rotation. Table 4 shows the details of data augmentation.

Repeated Augmentation. Our MoCo v2 pre-training is so fast in computation that data loading
becomes a new bottleneck that dominates running time in our setup. We perform repeated
augmentation on MedMNIST datasets at the level of dataset, also to enlarge augmentation space
and improve generalization. [21] proposed repeated augmentation in a growing batch mode to
improve generalization and convergence speed by reducing variances. This approach provokes a
challenge in computing resources. Recent works [21, 50, 7] proved that fixed batch mode also boosts
generalization and optimization by increasing mutiplicity of augmentations as well as parameter
updates and decreasing the number of unique samples per batch, which holds the batch size fixed.
Because the original contrastive learning works [13, 15] were implemented on ImageNet dataset, we
attempt to simulate the quantity of ImageNet per epoch to achieve optimal performances. The details
are shown in Table 5.

We only applied repeated augmentation on MedMNIST, but not CIFAR-10-LT. This is because we
follow all the settings of the official CIFAR-10 demo [14] in which repeated augmentation is not
employed.
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Table 5: Repeated augmentation. For a faster model convergence, we apply repeated augmenta-
tion [21, 49, 50] on MedMNIST by reproducing the large batch size and iteration numbers.

# training repeated times # samples per epoch
ImageNet 1,281,167 1 1,281,167
PathMNIST 89,996 14 1,259,944
OrganAMNIST 34,581 37 1,279,497
BloodMNIST 11,959 105 1,255,695
CIFAR-10-LT(ρ=100) 12,406 1 12,406

A.3 Training Recipe for MedMNIST and CIFAR-10

Benchmark Settings. We evaluate the initial queries by the performance of model trained on the
selected initial query, and present the results in Table 1, 7 and Figure 4. The benchmark experiments
are performed on NVIDIA RTX 1080 GPUs, with the following settings in Table 6.

Cold Start Settings for Existing Active Querying Criteria. To compare the cold start performance
of active querying criteria with random selection ( Figure 1), we trained a model with the test set and
applied existing active querying criteria.

Table 6: Benchmark settings. We apply the same settings for training MedMNIST, CIFAR-10, and
CIFAR-10-LT.

config value
backbone Inception-ResNet-v2
optimizer SGD
learning rate 0.1
learning rate schedule reduce learning rate on plateau, factor=0.5, patience=8
early stopping patience 50
max epochs 10000

augmentation

flip, p=0.5
rotation, p=0.5, in 90, 180, or 270 degrees

reverse color, p=0.1
fade color, p=0.1, 80% random noises + 20% original image

batch size 128
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B Additional Results on MedMNIST

B.1 Label Diversity is a Significant Add-on to Most Querying Strategies

As we present in Table 1, label diversity is an important underlying criterion in designing active
querying criteria. We plot the full results on all three MedMNIST datasets in Figure 6. Most existing
active querying strategies became more performant and robust in the presence of label diversity.

BALD
(Kirsch et al., 2017)

Consistency
(Gao et al., 2020)

Coreset
(Sener et al., 2017)

Margin
(Balcan et al., 2007)

VAAL
(Sinha et al., 2019)

Entropy
(Wang et al., 2014)

AU
C

(a) PathMNIST

AU
C

(b) OrganAMNIST

AU
C

(c) BloodMNIST

Figure 6: [Extended from Table 1] Label diversity yields more performant and robust active
querying strategies. The experiments are conducted on three datasets in MedMNIST. The red and
gray dots denote AUC scores of different active querying strategies with and without label diversity,
respectively. Most existing active querying strategies became more performant and robust in the
presence of label diversity, e.g. BALD, Margin, VAAL, and Uncertainty in particular. Some gray dots
are not plotted in the low budget regime because there are classes absent in the queries due to the
selection bias.
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B.2 Contrastive Features Enable Label Diversity to Mitigate Bias

Our proposed active querying strategy is capable of covering the majority of classes in most low
budget scenarios by integrating K-means clustering and contrastive features, including the tail classes
(e.g. femur-left, basophil). Compared to the existing active querying criteria, we achieve the best
class coverage of selected query among at all budgets presented in Table 2.

Random Consistency VAAL Margin Entropy Coreset BALD

basophil
eosinophil
erythroblast

ig
lymphocyte

neutrophil
monocyte

platelet

Ours

(b) BloodMNIST

Random Consistency VAAL Margin Entropy Coreset BALD

femur-left
femur-right

lung-right

heart
kidney-left

liver
kidney-right

lung-left

Ours
bladder

pancreas
spleen

(a) OrganAMNIST

Figure 7: [Continued from Figure 2] Our querying strategy yields better label diversity. Random
on the leftmost denotes the class distribution of randomly queried samples, which can also reflect the
approximate class distribution of the entire dataset. As seen, even with a relatively larger initial query
budget (691 images, 2% of OrganAMNIST, and 2,391 images, 20% of BloodMNIST), most active
querying strategies are biased towards certain classes. For example in OrganAMNIST, VAAL prefers
selecting data in the femur-right and platelet class, but largely ignores data in the lung, liver and
monocyte classes. On the contrary, our querying strategy not only selects more data from minority
classes (e.g., femur-left and basophil) while retaining the class distribution of major classes.

17



(a) PathMNIST (b) OrganAMNIST (c) BloodMNIST

Ea
sy
-to
-c
on
tra
st

H
ar
d-
to
-c
on
tra
st

Figure 8: Visualization of K-means clustering and our active selection. UMAP [35] is used to
visualize the feature clustering. Colors indicate the ground truth. Contrastive features clustered by
the K-means algorithm present a fairly clear separation in the 2D space, which helps enforce the
label diversity without the need of ground truth. The crosses denote the selected easy- (top) and
hard-to-contrast (bottom) data. Overall, hard-to-contrast data have a greater spread within each cluster
than easy-to-contrast ones. In addition, we find that easy-to-contrast tends to select outlier classes
that do not belong to the majority class in a cluster (see red arrows). This behavior will invalidate the
purpose of clustering and inevitably jeopardize the label diversity.

Selected Query Visualization. To ease the analysis, we project the image features (extracted by a
trained MoCo v2 encoder) onto a 2D space by UMAP [35]. The assigned pseudo labels have large
overlap with ground truths, suggesting that the features from MoCo v2 are quite discriminative for
each class. Overall, Figure 8 shows that hard-to-contrast queries have a greater spread within each
cluster than easy-to-contrast ones. Both strategies can cover 100% classes. Nevertheless, we notice
that easy-to-contrast selects local outliers in clusters: samples that do not belong to the majority class
in a cluster. Such behavior will invalidate the purpose of clustering, which is to query uniformly by
separating classes. Additionally, it possibly exposes the risk of introducing out-of-distribution data to
the query, which undermines active learning [26].
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C Experiments on CIFAR-10 and CIFAR-10-LT

C.1 Label Diversity is a Significant Add-on to Most Querying Strategies

As illustrated in Table 7 and Figure 9, label diversity is an important underlying criterion in designing
active querying criteria on CIFAR-10-LT, an extremely imbalanced dataset. We compare the results
of CIFAR-10-LT with MedMNIST datasets Figure 6. CIFAR-10-LT is more imbalanced than
MedMNIST, and the performance gain and robustness improvement of label diversity CIFAR-10-LT
is significantly larger than MedMNIST. Most of the active querying strategies fail to query all the
classes even at relatively larger initial query budgets.

Table 7: Diversity is a significant add-on to most querying strategies. AUC scores of different
querying strategies are compared on CIFAR-10 and CIFAR-10-LT. In the low budget regime (e.g. 10%
and 20% of the entire dataset), active querying strategies benefit from enforcing the label diversity of
the selected data. The cells are highlighted in blue when adding diversity performs no worse than the
original querying strategies. Some results are missing (marked as “-”) because the querying strategy
fails to sample at least one data point for each class. Results of more sampling ratios are presented in
Appendix Figure 9.

CIFAR-10-LT
1% 5% 10% 20% 30% 40%

Unif. (142) (710) (1420) (2841) (4261) (5682)

Consistency 3 78.0±1.2 90.0±0.1 91.4±1.1 93.4±0.2 93.2±0.2 94.6±0.2
7 - - 67.1±17.1 88.6±0.3 90.4±0.6 90.7±0.2

VAAL 3 80.9±1.0 90.3±0.5 92.6±0.2 93.7±0.4 93.9±0.8 94.5±0.2
7 - - - - - 77.3±1.6

Margin 3 81.2±1.8 88.7±0.7 91.7±0.9 93.2±0.2 94.5±0.1 94.7±0.4
7 - - 81.9±0.8 86.3±0.3 87.4±0.2 88.1±0.1

Entropy 3 78.1±1.4 89.6±0.5 92.0±1.2 91.9±1.3 94.0±0.6 94.0±0.7
7 - 79.0±1.2 65.6±15.6 86.4±0.2 88.5±0.2 89.5±0.7

Coreset 3 80.8±1.0 89.7±1.3 91.5±0.4 93.6±0.2 93.4±0.7 94.8±0.1
7 - - 65.9±15.9 86.9±0.1 88.2±0.1 90.3±0.2

BALD 3 83.3±0.6 90.8±0.3 92.8±0.1 90.8±2.4 94.0±0.8 94.7±0.4
7 - 76.8±2.3 64.9±14.9 84.7±0.6 88.0±0.5 88.9±0.1

C.2 Contrastive Features Enable Label Diversity to Mitigate Bias

Our proposed active querying strategy is capable of covering the majority of classes in most low
budget scenarios by integrating K-means clustering and contrastive features, including the tail classes
(horse, ship, and truck). Compared to the existing active querying criteria, we achieve the best class
coverage of selected query among at all budgets presented in Table 2. As depicted in Figure 9, our
querying strategy has a more similar distribution to the overall distribution of dataset and successfully
covers all the classes, with the highest proportion of minor classes (ship and truch) among random
selection and all active querying methods.
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Figure 9: Diversity yields more performant and robust active querying strategies. The
experiments are conducted on CIFAR-10-LT. The red and gray dots denote AUC scores of different
active querying strategies with and without label diversity, respectively. Observations are consistent
with those in medical applications (see Figure 6): Most existing active querying strategies became
more performant and robust in the presence of label diversity.
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Figure 10: Our querying strategy yields better label diversity. Random on the leftmost denotes
the class distribution of randomly queried samples, which can also reflect the approximate class
distribution of the entire dataset. As seen, even with a relatively larger initial query budget (5,000
images, 10% of CIFAR-10, and 1420 images, 10% of CIFAR-10-LT), most active querying strategies
are biased towards certain classes. Our querying strategy, on the contrary, is capable of selecting
more data from the minority classes such as horse, ship, and truck.
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Figure 11: Active querying based on Dataset Maps. (a,d) PathMNIST and OrganAMNIST dataset
overview. (b,e) Easy- and hard-to-learn data can be selected from the maps based on ground truths [26].
This querying strategy has two limitations: (1) requiring manual annotations and (2) data are stratified
by classes in the 2D space, leading to a poor label diversity in the selected queries. (c,f) Easy- and
hard-to-contrast data can be selected from the maps based on pseudo labels. This querying strategy is
label-free and the selected “hard-to-contrast” data represent the most common patterns in the entire
dataset. These data are more suitable for training and thus alleviate the cold start problem.
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Figure 12: Active querying based on Dataset Maps. (a) CIFAR-10-LT dataset overview. (b) Easy-
and hard-to-learn data can be selected from the maps based on ground truths [26]. This querying
strategy has two limitations: (1) requiring manual annotations and (2) data are stratified by classes in
the 2D space, leading to a poor label diversity in the selected queries. (c) Easy- and hard-to-contrast
data can be selected from the maps based on pseudo labels. This querying strategy is label-free and
the selected “hard-to-contrast” data represent the most common patterns in the entire dataset. These
data are more suitable for training and thus alleviate the cold start problem.
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Figure 13: Performance of each active learning querying strategies with different initial query
strategies on BloodMNIST. Hard-to-contrast initial query strategy (red lines) outperforms other
initial query strategies in every cycle of active learning. With each active learning querying strategy,
the performance of the initial cycle (20 labeled images) and the last cycle (50 labeled images) are
strongly correlated.
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Figure 14: Performance of each active learning querying strategies with different initial query
strategies on PathMNIST. Hard-to-contrast initial query strategy (red lines) outperforms other
initial query strategies in every cycle of active learning. With each active learning querying strategy,
the performance of the initial cycle (20 labeled images) and the last cycle (50 labeled images) are
strongly correlated.
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