File size: 3,443 Bytes
c1d2a78
3f83ac2
 
c1d2a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c71ce4
c1d2a78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c71ce4
 
 
 
 
 
 
c1d2a78
 
 
750780f
 
 
c1d2a78
 
 
 
 
 
0c71ce4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
language:
- en
dataset_info:
  features:
  - name: score
    dtype: int64
  - name: example_id
    dtype: string
  - name: text
    dtype: string
  - name: url
    dtype: string
  - name: timestamp
    dtype: string
  - name: source
    dtype: string
  splits:
  - name: train
    num_bytes: 398647381.09090906
    num_examples: 108000
  - name: test
    num_bytes: 7382358.909090909
    num_examples: 2000
  download_size: 250483279
  dataset_size: 406029740
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---


# ClassiFin_dataset

## Overview
**ClassiFin_dataset** is a dataset created for training and evaluating the **ClassiFin** model, designed to classify texts based on their relevance to finance, business, or economic topics. The dataset consists of **110,000** annotated documents sourced from the CulturaX dataset, with annotations provided by **Qwen/Qwen2.5-72B-Instruct**.

## Dataset Structure
Each document in the dataset has been assigned a score between **0 and 5**, reflecting its relevance to finance, business, or economics. The scoring is based on predefined criteria that assess the depth and complexity of financial and business content in the text. Additionally, each annotation includes a brief justification and a boolean flag indicating whether the text is finance-related.

## Annotation Methodology
The dataset was annotated using the following prompt:

```plaintext
Below is a text from a dataset. Evaluate whether the text is related to finance, business, or economy topics using the following scoring system:

- Award 1 point if the Text contains basic financial/business terminology or concepts
- Add another point if the Text specifically asks about financial analysis, business strategies, or economic principles
- Award a third point if the Text demonstrates advanced understanding of financial/business concepts
- Grant a fourth point if the Text requires expert-level financial/business knowledge
- Award a fifth point if the Text is highly technical and specific to finance/business/economy

Text: {text}

Please provide:
1. A score from 0-5 based on the criteria above
2. A brief justification (max 50 words)
3. A boolean (true/false) indicating if this is finance/business related (score >= 1)

Respond with only a JSON object (do not add ```json around the json) with these exact keys:
{"score": <0-5 integer>,
"justification": "<50 char max explanation>",
"is_finance": <true if score >= 3, else false>}
```

## Dataset Fields
Each sample in the dataset includes these two **main** fields:
- **text**: The original document text from CulturaX.
- **score**: An integer between 0-5 indicating financial relevance.

Besides there are several other mata information for each sample.


## License
Please refer to both below licenses when using this dataset.

- [mC4 license](https://huggingface.co/datasets/allenai/c4#license)
- [OSCAR license](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information)


## Citation
If you use this dataset in your research or projects, please cite it appropriately.



```
@misc{ClassiFin,
  title={ClassiFin: Finance Document Classifier},
  author={Liu, Jingshu and Qader, Raheel and Caillaut, Gaëtan and Nakhlem, Mariam and Barthelemy, Jean-Gabriel and Sadoune, Arezki and Foly, Sabine},
  url={https://huggingface.co/LinguaCustodia/ClassiFin},
  year={2025}
}
```