import csv import glob import json import gzip import logging import functools from pathlib import Path import wandb from typing import List, Tuple, Dict, Iterator, Union from dpr.data.qa_validation import calculate_matches logger = logging.getLogger() logger.setLevel(logging.INFO) if logger.hasHandlers(): logger.handlers.clear() console = logging.StreamHandler() logger.addHandler(console) RECALL_FILE_NAME = "recall_at_k.csv" RESULTS_FILE_NAME = "results.json" def parse_qa_csv_file(location) -> Iterator[Tuple[str, List[str]]]: with open(location) as ifile: reader = csv.reader(ifile, delimiter="\t") for row in reader: question = row[0] answers = eval(row[1]) yield question, answers def parse_qa_json_file(path): with open(path, "r") as f: data = json.load(f) for d in data: question = d["question"] answers = d["answers"] if "entity" in d: yield question, answers, d["entity"] else: yield question, answers def validate( dataset_name: str, passages: Dict[object, Tuple[str, str]], answers: List[List[str]], result_ctx_ids: List[Tuple[List[object], List[float]]], workers_num: int, match_type: str, out_file: str, use_wandb: bool = True, output_recall_at_k: bool = False, log: bool = True ) -> Union[List[List[bool]], Tuple[object, List[float]]]: match_stats = calculate_matches( passages, answers, result_ctx_ids, workers_num, match_type ) top_k_hits = match_stats.top_k_hits # if log: logger.info("Validation results: match_stats %s", match_stats) # if log: logger.info("Validation results: top k documents hits %s", top_k_hits) top_k_hits = [v / len(result_ctx_ids) for v in top_k_hits] if log: logger.info("Validation results: top k documents hits accuracy %s", top_k_hits) with open(out_file, "w") as f: for k, recall in enumerate(top_k_hits): f.write(f"{k+1},{recall}\n") if use_wandb: wandb.log({f"eval-{dataset_name}/k": k+1, f"eval-{dataset_name}/recall": recall}) if log: logger.info(f"Saved recall@k info to {out_file}") return match_stats.questions_doc_hits if not output_recall_at_k else (match_stats.questions_doc_hits, top_k_hits) def load_passages(ctx_file: str) -> Dict[object, Tuple[str, str]]: docs = {} logger.info("Reading data from: %s", ctx_file) if ctx_file.endswith(".gz"): with gzip.open(ctx_file, "rt") as tsvfile: reader = csv.reader( tsvfile, delimiter="\t", ) # file format: doc_id, doc_text, title for row in reader: if row[0] != "id": docs[row[0]] = (row[1], row[2]) else: with open(ctx_file) as tsvfile: reader = csv.reader( tsvfile, delimiter="\t", ) # file format: doc_id, doc_text, title for row in reader: if row[0] != "id": docs[row[0]] = (row[1], row[2]) return docs def save_results( passages: Dict[object, Tuple[str, str]], questions: List[str], answers: List[List[str]], top_passages_and_scores: List[Tuple[List[object], List[float]]], per_question_hits: List[List[bool]], out_file: str, output_no_text: bool = False, ): # join passages text with the result ids, their questions and assigning has|no answer labels merged_data = [] assert len(per_question_hits) == len(questions) == len(answers) for i, q in enumerate(questions): q_answers = answers[i] results_and_scores = top_passages_and_scores[i] hits = per_question_hits[i] docs = [passages[doc_id] for doc_id in results_and_scores[0]] scores = [str(score) for score in results_and_scores[1]] hit_indices = [j+1 for j, is_hit in enumerate(hits) if is_hit] hit_min_rank = hit_indices[0] if len(hit_indices) > 0 else None ctxs_num = len(hits) d = { "question": q, "answers": q_answers, "hit_min_rank": hit_min_rank, "all_hits": hit_indices, "ctxs": [ { "id": results_and_scores[0][c], "rank": (c + 1), "title": docs[c][1], "text": docs[c][0] if not output_no_text else "", "score": scores[c], "has_answer": hits[c], } for c in range(ctxs_num) ], } merged_data.append(d) with open(out_file, "w") as writer: writer.write(json.dumps(merged_data, indent=4) + "\n") logger.info("Saved results * scores to %s", out_file) def get_datasets(qa_file_pattern): logger.info(f"Reading datasets usign the pattern {qa_file_pattern}") all_patterns = qa_file_pattern.split(",") all_qa_files = functools.reduce(lambda a, b: a + b, [glob.glob(pattern) for pattern in all_patterns]) qa_file_dict = {} for qa_file in all_qa_files: dataset_name = Path(qa_file).stem.replace(".", "-") dataset = list(parse_qa_csv_file(qa_file)) if qa_file.endswith(".csv") else list(parse_qa_json_file(qa_file)) questions, question_answers = [], [] for ds_item in dataset: question, answers = ds_item questions.append(question) question_answers.append(answers) qa_file_dict[dataset_name] = (questions, question_answers) logger.info(f"{dataset_name}:{' ' * (20 - len(dataset_name))}{len(questions)} items") return qa_file_dict