Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Formats:
imagefolder
Size:
1K - 10K
Tags:
building
License:
update the dataset card
Browse files
README.md
CHANGED
@@ -6,4 +6,162 @@ tags:
|
|
6 |
- building
|
7 |
size_categories:
|
8 |
- 1K<n<10K
|
9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- building
|
7 |
size_categories:
|
8 |
- 1K<n<10K
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Building Contour Detection and Height Estimation Problem
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
## Dataset Summary
|
19 |
+
|
20 |
+
The **building_height_estimation** dataset is a collection of satellite images with annotated building footprints (polygons) and corresponding building heights.
|
21 |
+
It is designed for the **joint tasks of building contour detection (segmentation)** and **height estimation (regression)** from monocular aerial images.
|
22 |
+
|
23 |
+
* **Source & Owner**: The dataset originates from the [AlgoTester Building Contour Detection & Height Estimation Contest](https://algotester.com/en/ContestProblem/DisplayWithFile/135254).
|
24 |
+
* **Hugging Face Host**: [MElHuseyni / building_height_estimation](https://huggingface.co/datasets/MElHuseyni/building_height_estimation).
|
25 |
+
* **License**: MIT
|
26 |
+
* **Tags**: `building`, `segmentation`, `regression`, `remote sensing`
|
27 |
+
|
28 |
+

|
29 |
+
|
30 |
+
*Example of a dataset sample: a 512×512 satellite image with annotated building footprints (polygon overlays) and their corresponding height values.*
|
31 |
+
|
32 |
+
---
|
33 |
+
|
34 |
+
## Dataset Description
|
35 |
+
|
36 |
+
Each sample consists of:
|
37 |
+
|
38 |
+
* **Image**: RGB satellite image (512×512 px).
|
39 |
+
* **Annotations**: A LabelMe-like JSON containing:
|
40 |
+
|
41 |
+
* `points`: Polygon vertices (x, y) marking building footprints
|
42 |
+
* `group_id`: Numeric building height (meters)
|
43 |
+
|
44 |
+
The dataset supports training and evaluation for:
|
45 |
+
|
46 |
+
* Building footprint extraction
|
47 |
+
* Height estimation from monocular imagery
|
48 |
+
* Joint segmentation + regression architectures
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
## Dataset Structure
|
53 |
+
|
54 |
+
```
|
55 |
+
/
|
56 |
+
├── images/ # Training images
|
57 |
+
│ ├── img0001.png
|
58 |
+
│ ├── ...
|
59 |
+
│
|
60 |
+
├── ground_truth_files/ # Training labels (JSON)
|
61 |
+
│ ├── img0001.json
|
62 |
+
│ ├── ...
|
63 |
+
│
|
64 |
+
└── test_images/ # Test set (no ground truth provided)
|
65 |
+
├── test0001.png
|
66 |
+
├── ...
|
67 |
+
```
|
68 |
+
|
69 |
+
**Example Label (JSON):**
|
70 |
+
|
71 |
+
```json
|
72 |
+
{
|
73 |
+
"shapes": [
|
74 |
+
{
|
75 |
+
"points": [[316, 486], [307, 510], [312, 512]],
|
76 |
+
"group_id": 9
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"points": [[416, 457], [435, 446], [421, 423], [402, 434]],
|
80 |
+
"group_id": 7
|
81 |
+
}
|
82 |
+
]
|
83 |
+
}
|
84 |
+
```
|
85 |
+
|
86 |
+
---
|
87 |
+
|
88 |
+
## Evaluation & Scoring
|
89 |
+
|
90 |
+
The official contest defines the score as:
|
91 |
+
|
92 |
+
```
|
93 |
+
Score = max(0, ⌊ (Precision + Recall − 4 × HeightError) × 5 × 10⁴ ⌋)
|
94 |
+
```
|
95 |
+
|
96 |
+
* **Precision**: Correct predicted building area ÷ total predicted area
|
97 |
+
* **Recall**: Correctly matched ground truth area ÷ total ground truth area
|
98 |
+
* **HeightError**: Weighted RMSE of predicted vs. true heights for matched buildings
|
99 |
+
|
100 |
+
**Important constraints:**
|
101 |
+
|
102 |
+
* ≤ 1,000 buildings per image
|
103 |
+
* ≤ 300 vertices per polygon
|
104 |
+
* Total vertices per JSON ≤ 5,000
|
105 |
+
* Height ∈ [0, 1000] meters
|
106 |
+
* Coordinates within [0, 512]
|
107 |
+
* No self-intersecting polygons
|
108 |
+
* Overlap between two buildings ≤ 10% of smaller area
|
109 |
+
|
110 |
+
---
|
111 |
+
|
112 |
+
## Usage
|
113 |
+
|
114 |
+
```python
|
115 |
+
from datasets import load_dataset
|
116 |
+
|
117 |
+
ds = load_dataset("MElHuseyni/building_height_estimation")
|
118 |
+
|
119 |
+
sample = ds["train"][0]
|
120 |
+
print(sample["image"])
|
121 |
+
print(sample["buildings"])
|
122 |
+
```
|
123 |
+
|
124 |
+
Each `building` entry contains a list of polygon points and a height value.
|
125 |
+
|
126 |
+
---
|
127 |
+
|
128 |
+
## Limitations
|
129 |
+
|
130 |
+
* **Monocular Input**: Heights are inferred from a single RGB image, no stereo or LiDAR.
|
131 |
+
* **Annotation Noise**: Minor misalignments or errors in footprints may exist.
|
132 |
+
* **Imbalance**: Height distribution may be skewed (low-rise dominant).
|
133 |
+
* **Test Labels**: Hidden; only evaluable via AlgoTester scoring scripts.
|
134 |
+
|
135 |
+
---
|
136 |
+
|
137 |
+
## Citation
|
138 |
+
|
139 |
+
If you use this dataset, please cite both the Hugging Face dataset and the original AlgoTester contest:
|
140 |
+
|
141 |
+
```
|
142 |
+
@misc{building_height_estimation_MElHuseyni,
|
143 |
+
title = {building_height_estimation},
|
144 |
+
author = {MElHuseyni},
|
145 |
+
year = {2025},
|
146 |
+
howpublished = {Hugging Face Dataset},
|
147 |
+
url = {https://huggingface.co/datasets/MElHuseyni/building_height_estimation}
|
148 |
+
}
|
149 |
+
|
150 |
+
@online{algotester_building_height,
|
151 |
+
title = {Building Contour Detection & Height Estimation Contest},
|
152 |
+
author = {AlgoTester},
|
153 |
+
year = {2024},
|
154 |
+
url = {https://algotester.com/en/ContestProblem/DisplayWithFile/135254}
|
155 |
+
}
|
156 |
+
```
|
157 |
+
|
158 |
+
---
|
159 |
+
|
160 |
+
## Acknowledgements
|
161 |
+
|
162 |
+
* Dataset originally prepared and hosted by **AlgoTester** for their contest.
|
163 |
+
* Curated and published on Hugging Face by **[MElHuseyni](https://huggingface.co/MElHuseyni)**.
|
164 |
+
* Licensed under MIT for research and development purposes.
|
165 |
+
|
166 |
+
---
|
167 |
+
|