MElHuseyni commited on
Commit
a7d7157
·
verified ·
1 Parent(s): 7264f20

update the dataset card

Browse files
Files changed (1) hide show
  1. README.md +159 -1
README.md CHANGED
@@ -6,4 +6,162 @@ tags:
6
  - building
7
  size_categories:
8
  - 1K<n<10K
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - building
7
  size_categories:
8
  - 1K<n<10K
9
+ ---
10
+
11
+
12
+
13
+
14
+ # Building Contour Detection and Height Estimation Problem
15
+
16
+
17
+
18
+ ## Dataset Summary
19
+
20
+ The **building_height_estimation** dataset is a collection of satellite images with annotated building footprints (polygons) and corresponding building heights.
21
+ It is designed for the **joint tasks of building contour detection (segmentation)** and **height estimation (regression)** from monocular aerial images.
22
+
23
+ * **Source & Owner**: The dataset originates from the [AlgoTester Building Contour Detection & Height Estimation Contest](https://algotester.com/en/ContestProblem/DisplayWithFile/135254).
24
+ * **Hugging Face Host**: [MElHuseyni / building_height_estimation](https://huggingface.co/datasets/MElHuseyni/building_height_estimation).
25
+ * **License**: MIT
26
+ * **Tags**: `building`, `segmentation`, `regression`, `remote sensing`
27
+
28
+ ![Example of a dataset sample: a 512×512 satellite image with annotated building footprints (polygon overlays) and their corresponding height values](https://cdn-uploads.huggingface.co/production/uploads/6422eab8e2029ade06eeee2c/MpD7VOzEZ0YbsNzWr_GD8.png)
29
+
30
+ *Example of a dataset sample: a 512×512 satellite image with annotated building footprints (polygon overlays) and their corresponding height values.*
31
+
32
+ ---
33
+
34
+ ## Dataset Description
35
+
36
+ Each sample consists of:
37
+
38
+ * **Image**: RGB satellite image (512×512 px).
39
+ * **Annotations**: A LabelMe-like JSON containing:
40
+
41
+ * `points`: Polygon vertices (x, y) marking building footprints
42
+ * `group_id`: Numeric building height (meters)
43
+
44
+ The dataset supports training and evaluation for:
45
+
46
+ * Building footprint extraction
47
+ * Height estimation from monocular imagery
48
+ * Joint segmentation + regression architectures
49
+
50
+ ---
51
+
52
+ ## Dataset Structure
53
+
54
+ ```
55
+ /
56
+ ├── images/ # Training images
57
+ │ ├── img0001.png
58
+ │ ├── ...
59
+
60
+ ├── ground_truth_files/ # Training labels (JSON)
61
+ │ ├── img0001.json
62
+ │ ├── ...
63
+
64
+ └── test_images/ # Test set (no ground truth provided)
65
+ ├── test0001.png
66
+ ├── ...
67
+ ```
68
+
69
+ **Example Label (JSON):**
70
+
71
+ ```json
72
+ {
73
+ "shapes": [
74
+ {
75
+ "points": [[316, 486], [307, 510], [312, 512]],
76
+ "group_id": 9
77
+ },
78
+ {
79
+ "points": [[416, 457], [435, 446], [421, 423], [402, 434]],
80
+ "group_id": 7
81
+ }
82
+ ]
83
+ }
84
+ ```
85
+
86
+ ---
87
+
88
+ ## Evaluation & Scoring
89
+
90
+ The official contest defines the score as:
91
+
92
+ ```
93
+ Score = max(0, ⌊ (Precision + Recall − 4 × HeightError) × 5 × 10⁴ ⌋)
94
+ ```
95
+
96
+ * **Precision**: Correct predicted building area ÷ total predicted area
97
+ * **Recall**: Correctly matched ground truth area ÷ total ground truth area
98
+ * **HeightError**: Weighted RMSE of predicted vs. true heights for matched buildings
99
+
100
+ **Important constraints:**
101
+
102
+ * ≤ 1,000 buildings per image
103
+ * ≤ 300 vertices per polygon
104
+ * Total vertices per JSON ≤ 5,000
105
+ * Height ∈ [0, 1000] meters
106
+ * Coordinates within [0, 512]
107
+ * No self-intersecting polygons
108
+ * Overlap between two buildings ≤ 10% of smaller area
109
+
110
+ ---
111
+
112
+ ## Usage
113
+
114
+ ```python
115
+ from datasets import load_dataset
116
+
117
+ ds = load_dataset("MElHuseyni/building_height_estimation")
118
+
119
+ sample = ds["train"][0]
120
+ print(sample["image"])
121
+ print(sample["buildings"])
122
+ ```
123
+
124
+ Each `building` entry contains a list of polygon points and a height value.
125
+
126
+ ---
127
+
128
+ ## Limitations
129
+
130
+ * **Monocular Input**: Heights are inferred from a single RGB image, no stereo or LiDAR.
131
+ * **Annotation Noise**: Minor misalignments or errors in footprints may exist.
132
+ * **Imbalance**: Height distribution may be skewed (low-rise dominant).
133
+ * **Test Labels**: Hidden; only evaluable via AlgoTester scoring scripts.
134
+
135
+ ---
136
+
137
+ ## Citation
138
+
139
+ If you use this dataset, please cite both the Hugging Face dataset and the original AlgoTester contest:
140
+
141
+ ```
142
+ @misc{building_height_estimation_MElHuseyni,
143
+ title = {building_height_estimation},
144
+ author = {MElHuseyni},
145
+ year = {2025},
146
+ howpublished = {Hugging Face Dataset},
147
+ url = {https://huggingface.co/datasets/MElHuseyni/building_height_estimation}
148
+ }
149
+
150
+ @online{algotester_building_height,
151
+ title = {Building Contour Detection & Height Estimation Contest},
152
+ author = {AlgoTester},
153
+ year = {2024},
154
+ url = {https://algotester.com/en/ContestProblem/DisplayWithFile/135254}
155
+ }
156
+ ```
157
+
158
+ ---
159
+
160
+ ## Acknowledgements
161
+
162
+ * Dataset originally prepared and hosted by **AlgoTester** for their contest.
163
+ * Curated and published on Hugging Face by **[MElHuseyni](https://huggingface.co/MElHuseyni)**.
164
+ * Licensed under MIT for research and development purposes.
165
+
166
+ ---
167
+