Upload 3 files
Browse files- save_parquet.py +167 -0
- test.parquet +3 -0
- train.parquet +3 -0
save_parquet.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pyarrow as pa
|
3 |
+
import pyarrow.parquet as pq
|
4 |
+
from pathlib import Path
|
5 |
+
import cv2
|
6 |
+
import logging
|
7 |
+
from typing import List, Dict, Tuple
|
8 |
+
import json
|
9 |
+
|
10 |
+
|
11 |
+
class ArabicOCRDatasetConverter:
|
12 |
+
def __init__(self, dataset_dir: str):
|
13 |
+
self.dataset_dir = Path(dataset_dir)
|
14 |
+
self.setup_logging()
|
15 |
+
|
16 |
+
def setup_logging(self):
|
17 |
+
logging.basicConfig(
|
18 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
19 |
+
)
|
20 |
+
self.logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
def get_image_annotation_pairs(self) -> List[Tuple[Path, Path]]:
|
23 |
+
pairs = []
|
24 |
+
for img_path in self.dataset_dir.glob("*.jpg"):
|
25 |
+
txt_path = img_path.with_suffix(".txt")
|
26 |
+
if txt_path.exists():
|
27 |
+
pairs.append((img_path, txt_path))
|
28 |
+
else:
|
29 |
+
self.logger.warning(f"No annotation file found for {img_path}")
|
30 |
+
return pairs
|
31 |
+
|
32 |
+
def order_text_instances(self, annotations: List[Dict]) -> str:
|
33 |
+
"""
|
34 |
+
Order text instances from top to bottom, right to left using coordinates
|
35 |
+
"""
|
36 |
+
|
37 |
+
# For each annotation, get the top y-coordinate and rightmost x-coordinate
|
38 |
+
def parse_coordinates(flattened):
|
39 |
+
return [
|
40 |
+
(flattened[i], flattened[i + 1]) for i in range(0, len(flattened), 2)
|
41 |
+
]
|
42 |
+
|
43 |
+
def get_center(flattened_coordinates):
|
44 |
+
polygon = parse_coordinates(flattened_coordinates)
|
45 |
+
x_coords = [point[0] for point in polygon]
|
46 |
+
y_coords = [point[1] for point in polygon]
|
47 |
+
return (sum(x_coords) / len(polygon), sum(y_coords) / len(polygon))
|
48 |
+
|
49 |
+
def arabic_sort_key(annotation):
|
50 |
+
center = get_center(annotation["coordinates"])
|
51 |
+
return (center[1], -center[0])
|
52 |
+
|
53 |
+
def non_arabic_sort_key(annotation):
|
54 |
+
center = get_center(annotation["coordinates"])
|
55 |
+
return (center[1], center[0])
|
56 |
+
|
57 |
+
arabic_annotations = [a for a in annotations if a["language"] == "Arabic"]
|
58 |
+
|
59 |
+
arabic_annotations = sorted(arabic_annotations, key=arabic_sort_key)
|
60 |
+
english_annotations = [a for a in annotations if a["language"] != "Arabic"]
|
61 |
+
english_annotations = sorted(english_annotations, key=non_arabic_sort_key)
|
62 |
+
# Join all text with spaces
|
63 |
+
full_text = " ".join(
|
64 |
+
ann["text"] for ann in arabic_annotations + english_annotations
|
65 |
+
)
|
66 |
+
|
67 |
+
return full_text
|
68 |
+
|
69 |
+
def parse_annotation_file(self, annotation_path: Path) -> List[Dict]:
|
70 |
+
annotations = []
|
71 |
+
try:
|
72 |
+
with open(annotation_path, "r", encoding="utf-8") as f:
|
73 |
+
for line in f:
|
74 |
+
line = line.strip().rstrip(",")
|
75 |
+
parts = line.split(",")
|
76 |
+
if len(parts) >= 10:
|
77 |
+
annotation = {
|
78 |
+
"coordinates": [float(x) for x in parts[:8]],
|
79 |
+
"language": parts[8],
|
80 |
+
"text": parts[9],
|
81 |
+
}
|
82 |
+
annotations.append(annotation)
|
83 |
+
else:
|
84 |
+
self.logger.warning(
|
85 |
+
f"Line has insufficient elements in {annotation_path}: {line}"
|
86 |
+
)
|
87 |
+
except Exception as e:
|
88 |
+
self.logger.error(f"Error parsing {annotation_path}: {e}")
|
89 |
+
return annotations
|
90 |
+
|
91 |
+
def create_dataset(self, include_images: bool = False) -> pd.DataFrame:
|
92 |
+
data = []
|
93 |
+
pairs = self.get_image_annotation_pairs()
|
94 |
+
|
95 |
+
for img_path, txt_path in pairs:
|
96 |
+
try:
|
97 |
+
# Read image properties
|
98 |
+
img = cv2.imread(str(img_path))
|
99 |
+
if img is None:
|
100 |
+
self.logger.warning(f"Could not read image: {img_path}")
|
101 |
+
continue
|
102 |
+
|
103 |
+
img_height, img_width = img.shape[:2]
|
104 |
+
|
105 |
+
# Get annotations
|
106 |
+
annotations = self.parse_annotation_file(txt_path)
|
107 |
+
|
108 |
+
# Create a single entry for the image
|
109 |
+
entry = {
|
110 |
+
"image_name": img_path.stem,
|
111 |
+
"instances": [
|
112 |
+
{
|
113 |
+
"coordinates": ann["coordinates"],
|
114 |
+
"language": ann["language"],
|
115 |
+
"text": ann["text"],
|
116 |
+
}
|
117 |
+
for ann in annotations
|
118 |
+
],
|
119 |
+
"full_text": self.order_text_instances(annotations),
|
120 |
+
}
|
121 |
+
|
122 |
+
if include_images:
|
123 |
+
entry["image_data"] = img.tobytes()
|
124 |
+
|
125 |
+
data.append(entry)
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
self.logger.error(f"Error processing {img_path}: {e}")
|
129 |
+
|
130 |
+
return pd.DataFrame(data)
|
131 |
+
|
132 |
+
def save_parquet(self, output_path: str, include_images: bool = False) -> None:
|
133 |
+
df = self.create_dataset(include_images)
|
134 |
+
|
135 |
+
if df.empty:
|
136 |
+
self.logger.error("No data to save!")
|
137 |
+
return
|
138 |
+
|
139 |
+
try:
|
140 |
+
# Convert the instances list to a JSON string for storage
|
141 |
+
df["instances"] = df["instances"].apply(json.dumps)
|
142 |
+
|
143 |
+
table = pa.Table.from_pandas(df)
|
144 |
+
pq.write_table(table, output_path, compression="snappy")
|
145 |
+
|
146 |
+
self.logger.info(f"Created parquet file at {output_path}")
|
147 |
+
self.logger.info(f"Dataset shape: {df.shape}")
|
148 |
+
self.logger.info("\nSample data:")
|
149 |
+
print("\nSample entry:")
|
150 |
+
sample = df.iloc[0]
|
151 |
+
print(f"Image: {sample['image_name']}")
|
152 |
+
print(f"Full text: {sample['full_text']}")
|
153 |
+
print(f"Instances: {json.loads(sample['instances'])}")
|
154 |
+
|
155 |
+
except Exception as e:
|
156 |
+
self.logger.error(f"Error saving parquet file: {e}")
|
157 |
+
|
158 |
+
|
159 |
+
# Example usage
|
160 |
+
if __name__ == "__main__":
|
161 |
+
converter = ArabicOCRDatasetConverter(dataset_dir=r"Det_train")
|
162 |
+
|
163 |
+
converter.save_parquet(output_path="train.parquet", include_images=False)
|
164 |
+
|
165 |
+
converter = ArabicOCRDatasetConverter(dataset_dir=r"Det_test")
|
166 |
+
|
167 |
+
converter.save_parquet(output_path="test.parquet", include_images=False)
|
test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef3e81a1e57b940c1a04a50903c1a58f6360c82b0c529e3f0d9c6b82e030c486
|
3 |
+
size 91446
|
train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9d364aa97a8b098f4ed34414bbeaaaab6bc651e961c72e3188f4c0d412adfc5
|
3 |
+
size 273203
|