Datasets:
Modalities:
Geospatial
Languages:
English
Size:
1M<n<10M
Tags:
street view imagery
open data
data fusion
urban analytics
GeoAI
volunteered geographic information
License:
Update README.md
Browse files
README.md
CHANGED
@@ -26,9 +26,12 @@ Repository for the tabular portion of the [Global Streetscapes dataset](https://
|
|
26 |
|
27 |
## Content Breakdown
|
28 |
```
|
29 |
-
Global Streetscapes (
|
30 |
-
├── data/ (
|
31 |
-
│ ├── 21 CSV files with 346 unique features in total and 10M rows each
|
|
|
|
|
|
|
32 |
├── manual_labels/ (23 GB)
|
33 |
│ ├── train/
|
34 |
│ │ ├── 8 CSV files with manual labels for contextual attributes (training)
|
@@ -45,13 +48,38 @@ Global Streetscapes (62+ GB)
|
|
45 |
```
|
46 |
|
47 |
## Download Instructions
|
48 |
-
Please follow this [guide](https://huggingface.co/docs/huggingface_hub/guides/download) from Hugging Face for download instructions. Please avoid using 'git clone' to download the repo as Git stores the files twice and will double the disk space usage
|
49 |
|
50 |
We have also provided a script `download_folder.py` to download a specifc folder from this dataset, instead of just a single file or the entire dataset.
|
51 |
|
52 |
To download the imagery portion (10 million images, ~6TB), please follow the code and documentation in our [GitHub repo](https://github.com/ualsg/global-streetscapes).
|
53 |
Our [Wiki](https://github.com/ualsg/global-streetscapes/wiki/2-Download-images) contains instructions and a demo on how to filter the dataset for a subset of data of your interest and download the image files for them.
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
## Contribution Guide
|
56 |
We welcome contributions to this dataset! Please follow these steps:
|
57 |
|
@@ -71,29 +99,18 @@ For any questions, please contact us via [Discussions](https://huggingface.co/da
|
|
71 |
|
72 |
## Changelog
|
73 |
|
74 |
-
**
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
BibTeX:
|
89 |
-
```
|
90 |
-
@article{2024_global_streetscapes,
|
91 |
-
author = {Hou, Yujun and Quintana, Matias and Khomiakov, Maxim and Yap, Winston and Ouyang, Jiani and Ito, Koichi and Wang, Zeyu and Zhao, Tianhong and Biljecki, Filip},
|
92 |
-
doi = {10.1016/j.isprsjprs.2024.06.023},
|
93 |
-
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
|
94 |
-
pages = {216-238},
|
95 |
-
title = {Global Streetscapes -- A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics},
|
96 |
-
volume = {215},
|
97 |
-
year = {2024}
|
98 |
-
}
|
99 |
-
```
|
|
|
26 |
|
27 |
## Content Breakdown
|
28 |
```
|
29 |
+
Global Streetscapes (74 GB)
|
30 |
+
├── data/ (49 GB)
|
31 |
+
│ ├── 21 CSV files with 346 unique features in total and 10M rows each (37 GB)
|
32 |
+
│ ├── parquet/ (12 GB) (New)
|
33 |
+
│ ├── 21 Parquet equivalents of the 21 CSV files (New)
|
34 |
+
│ ├── 1 combined Parquet file (New)
|
35 |
├── manual_labels/ (23 GB)
|
36 |
│ ├── train/
|
37 |
│ │ ├── 8 CSV files with manual labels for contextual attributes (training)
|
|
|
48 |
```
|
49 |
|
50 |
## Download Instructions
|
51 |
+
Please follow this [guide](https://huggingface.co/docs/huggingface_hub/guides/download) from Hugging Face for download instructions. Please avoid using 'git clone' to download the repo as Git stores the files twice and will double the disk space usage.
|
52 |
|
53 |
We have also provided a script `download_folder.py` to download a specifc folder from this dataset, instead of just a single file or the entire dataset.
|
54 |
|
55 |
To download the imagery portion (10 million images, ~6TB), please follow the code and documentation in our [GitHub repo](https://github.com/ualsg/global-streetscapes).
|
56 |
Our [Wiki](https://github.com/ualsg/global-streetscapes/wiki/2-Download-images) contains instructions and a demo on how to filter the dataset for a subset of data of your interest and download the image files for them.
|
57 |
|
58 |
+
## Read More
|
59 |
+
|
60 |
+
Read more about this project on [its website](https://ual.sg/project/global-streetscapes/), which includes an overview of this effort together with the background, [paper](https://doi.org/10.1016/j.isprsjprs.2024.06.023), examples, and FAQ.
|
61 |
+
|
62 |
+
A free version (postprint / author-accepted manuscript) can be downloaded [here](https://ual.sg/publication/2024-global-streetscapes/).
|
63 |
+
|
64 |
+
## Citation
|
65 |
+
|
66 |
+
To cite this work, please refer to the [paper](https://doi.org/10.1016/j.isprsjprs.2024.06.023):
|
67 |
+
|
68 |
+
Hou Y, Quintana M, Khomiakov M, Yap W, Ouyang J, Ito K, Wang Z, Zhao T, Biljecki F (2024): Global Streetscapes — A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics. ISPRS Journal of Photogrammetry and Remote Sensing 215: 216-238. doi:[10.1016/j.isprsjprs.2024.06.023](https://doi.org/10.1016/j.isprsjprs.2024.06.023)
|
69 |
+
|
70 |
+
BibTeX:
|
71 |
+
```
|
72 |
+
@article{2024_global_streetscapes,
|
73 |
+
author = {Hou, Yujun and Quintana, Matias and Khomiakov, Maxim and Yap, Winston and Ouyang, Jiani and Ito, Koichi and Wang, Zeyu and Zhao, Tianhong and Biljecki, Filip},
|
74 |
+
doi = {10.1016/j.isprsjprs.2024.06.023},
|
75 |
+
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
|
76 |
+
pages = {216-238},
|
77 |
+
title = {Global Streetscapes -- A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics},
|
78 |
+
volume = {215},
|
79 |
+
year = {2024}
|
80 |
+
}
|
81 |
+
```
|
82 |
+
|
83 |
## Contribution Guide
|
84 |
We welcome contributions to this dataset! Please follow these steps:
|
85 |
|
|
|
99 |
|
100 |
## Changelog
|
101 |
|
102 |
+
**2025-02-19**
|
103 |
|
104 |
+
**Added:**
|
105 |
|
106 |
+
- New [data/parquet/](https://huggingface.co/datasets/NUS-UAL/global-streetscapes/tree/main/data/parquet) folder containing Parquet files for improved efficiency in large-scale data processing.
|
107 |
+
- 21 Parquet equivalents of the 21 CSV files
|
108 |
+
- 1 Parquet combining contextual.csv, metadata_common_attributes.csv, segmentation.csv, simplemaps.csv, ghsl.csv, perception.csv, places365.csv, and osm.csv
|
109 |
|
110 |
+
**Change contributed by:**
|
111 |
|
112 |
+
Donnelly, C., Hadjiivanov, A., & Kalverla, P. (2024). streetscapes. Zenodo. [https://doi.org/10.5281/zenodo.14283533](https://doi.org/10.5281/zenodo.14283533)
|
113 |
|
114 |
+
**Refs:**
|
115 |
|
116 |
+
[PR #6](https://huggingface.co/datasets/NUS-UAL/global-streetscapes/discussions/6) [Discussion #5](https://huggingface.co/datasets/NUS-UAL/global-streetscapes/discussions/5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|