Add Python utilities and usage examples
Browse files- examples.py +265 -0
- weather_geo_utils.py +380 -0
examples.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Example usage of the Weather Geo ERA5 Dataset
|
5 |
+
|
6 |
+
This script demonstrates how to use the weather_geo_utils module to load
|
7 |
+
and analyze weather data from the HuggingFace dataset.
|
8 |
+
|
9 |
+
Requirements:
|
10 |
+
pip install pandas huggingface-hub matplotlib seaborn
|
11 |
+
"""
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import seaborn as sns
|
16 |
+
from weather_geo_utils import (
|
17 |
+
load_point_data,
|
18 |
+
load_cities_data,
|
19 |
+
convert_temperature_units,
|
20 |
+
get_dataset_info
|
21 |
+
)
|
22 |
+
|
23 |
+
def example_single_city():
|
24 |
+
"""Example: Load data for a single city (Paris)."""
|
25 |
+
print("=" * 60)
|
26 |
+
print("EXAMPLE 1: Single City Analysis (Paris)")
|
27 |
+
print("=" * 60)
|
28 |
+
|
29 |
+
# Load 2023 data for Paris
|
30 |
+
print("Loading Paris weather data for 2023...")
|
31 |
+
df = load_point_data(
|
32 |
+
lat=48.8566,
|
33 |
+
lon=2.3522,
|
34 |
+
start_date="2023-01-01",
|
35 |
+
end_date="2023-12-31"
|
36 |
+
)
|
37 |
+
|
38 |
+
# Convert temperatures to Celsius
|
39 |
+
df = convert_temperature_units(df, from_unit='K', to_unit='C')
|
40 |
+
|
41 |
+
print(f"Loaded {len(df)} records")
|
42 |
+
print(f"Date range: {df['time'].min()} to {df['time'].max()}")
|
43 |
+
print(f"Temperature range: {df['t2m'].min():.1f}°C to {df['t2m'].max():.1f}°C")
|
44 |
+
print(f"Average temperature: {df['t2m'].mean():.1f}°C")
|
45 |
+
|
46 |
+
# Plot temperature timeline
|
47 |
+
plt.figure(figsize=(12, 6))
|
48 |
+
plt.plot(df['time'], df['t2m'], linewidth=0.5, alpha=0.7)
|
49 |
+
plt.title('Paris Temperature 2023')
|
50 |
+
plt.xlabel('Date')
|
51 |
+
plt.ylabel('Temperature (°C)')
|
52 |
+
plt.grid(True, alpha=0.3)
|
53 |
+
plt.tight_layout()
|
54 |
+
plt.savefig('paris_temperature_2023.png', dpi=300, bbox_inches='tight')
|
55 |
+
plt.show()
|
56 |
+
|
57 |
+
return df
|
58 |
+
|
59 |
+
def example_multiple_cities():
|
60 |
+
"""Example: Compare multiple European cities."""
|
61 |
+
print("\n" + "=" * 60)
|
62 |
+
print("EXAMPLE 2: Multiple Cities Comparison")
|
63 |
+
print("=" * 60)
|
64 |
+
|
65 |
+
# Define cities
|
66 |
+
cities = [
|
67 |
+
(48.8566, 2.3522, "Paris"),
|
68 |
+
(51.5074, -0.1278, "London"),
|
69 |
+
(52.5200, 13.4050, "Berlin"),
|
70 |
+
(41.9028, 12.4964, "Rome"),
|
71 |
+
(59.3293, 18.0686, "Stockholm"),
|
72 |
+
]
|
73 |
+
|
74 |
+
print(f"Loading data for {len(cities)} cities...")
|
75 |
+
|
76 |
+
# Load 2023 data for all cities
|
77 |
+
df = load_cities_data(cities, start_date="2023-01-01", end_date="2023-12-31")
|
78 |
+
|
79 |
+
# Convert temperatures to Celsius
|
80 |
+
df = convert_temperature_units(df, from_unit='K', to_unit='C')
|
81 |
+
|
82 |
+
print(f"Total records loaded: {len(df)}")
|
83 |
+
|
84 |
+
# Calculate monthly averages
|
85 |
+
df['month'] = df['time'].dt.month
|
86 |
+
monthly_temps = df.groupby(['city', 'month'])['t2m'].mean().reset_index()
|
87 |
+
monthly_temps['month_name'] = pd.to_datetime(monthly_temps['month'], format='%m').dt.strftime('%b')
|
88 |
+
|
89 |
+
# Plot comparison
|
90 |
+
plt.figure(figsize=(12, 8))
|
91 |
+
|
92 |
+
# Temperature comparison
|
93 |
+
plt.subplot(2, 1, 1)
|
94 |
+
for city in df['city'].unique():
|
95 |
+
city_data = monthly_temps[monthly_temps['city'] == city]
|
96 |
+
plt.plot(city_data['month'], city_data['t2m'], marker='o', label=city, linewidth=2)
|
97 |
+
|
98 |
+
plt.title('Monthly Average Temperature Comparison 2023')
|
99 |
+
plt.xlabel('Month')
|
100 |
+
plt.ylabel('Temperature (°C)')
|
101 |
+
plt.legend()
|
102 |
+
plt.grid(True, alpha=0.3)
|
103 |
+
plt.xticks(range(1, 13), ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
|
104 |
+
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
|
105 |
+
|
106 |
+
# Annual statistics
|
107 |
+
plt.subplot(2, 1, 2)
|
108 |
+
annual_stats = df.groupby('city')['t2m'].agg(['mean', 'min', 'max']).reset_index()
|
109 |
+
|
110 |
+
x = range(len(annual_stats))
|
111 |
+
plt.bar(x, annual_stats['mean'], alpha=0.7, label='Average')
|
112 |
+
plt.errorbar(x, annual_stats['mean'],
|
113 |
+
yerr=[annual_stats['mean'] - annual_stats['min'],
|
114 |
+
annual_stats['max'] - annual_stats['mean']],
|
115 |
+
fmt='none', color='black', capsize=5, alpha=0.8)
|
116 |
+
|
117 |
+
plt.title('Annual Temperature Statistics 2023')
|
118 |
+
plt.xlabel('City')
|
119 |
+
plt.ylabel('Temperature (°C)')
|
120 |
+
plt.xticks(x, annual_stats['city'], rotation=45)
|
121 |
+
plt.grid(True, alpha=0.3)
|
122 |
+
|
123 |
+
plt.tight_layout()
|
124 |
+
plt.savefig('cities_temperature_comparison.png', dpi=300, bbox_inches='tight')
|
125 |
+
plt.show()
|
126 |
+
|
127 |
+
# Print summary statistics
|
128 |
+
print("\nAnnual Temperature Summary (°C):")
|
129 |
+
print(annual_stats.round(1))
|
130 |
+
|
131 |
+
return df
|
132 |
+
|
133 |
+
def example_climate_analysis():
|
134 |
+
"""Example: Long-term climate analysis."""
|
135 |
+
print("\n" + "=" * 60)
|
136 |
+
print("EXAMPLE 3: Long-term Climate Analysis (Paris)")
|
137 |
+
print("=" * 60)
|
138 |
+
|
139 |
+
print("Loading historical data for Paris (1980-2023)...")
|
140 |
+
df = load_point_data(
|
141 |
+
lat=48.8566,
|
142 |
+
lon=2.3522,
|
143 |
+
start_date="1980-01-01",
|
144 |
+
end_date="2023-12-31"
|
145 |
+
)
|
146 |
+
|
147 |
+
# Convert temperatures to Celsius
|
148 |
+
df = convert_temperature_units(df, from_unit='K', to_unit='C')
|
149 |
+
|
150 |
+
print(f"Loaded {len(df)} records over {df['time'].dt.year.nunique()} years")
|
151 |
+
|
152 |
+
# Calculate annual averages
|
153 |
+
df['year'] = df['time'].dt.year
|
154 |
+
annual_temps = df.groupby('year')['t2m'].mean().reset_index()
|
155 |
+
|
156 |
+
# Plot long-term trend
|
157 |
+
plt.figure(figsize=(14, 10))
|
158 |
+
|
159 |
+
# Annual temperature trend
|
160 |
+
plt.subplot(2, 2, 1)
|
161 |
+
plt.plot(annual_temps['year'], annual_temps['t2m'], linewidth=1, alpha=0.7)
|
162 |
+
|
163 |
+
# Add trend line
|
164 |
+
from numpy.polynomial import Polynomial
|
165 |
+
p = Polynomial.fit(annual_temps['year'], annual_temps['t2m'], 1)
|
166 |
+
plt.plot(annual_temps['year'], p(annual_temps['year']), 'r--', linewidth=2, label='Trend')
|
167 |
+
|
168 |
+
plt.title('Annual Average Temperature (Paris)')
|
169 |
+
plt.xlabel('Year')
|
170 |
+
plt.ylabel('Temperature (°C)')
|
171 |
+
plt.legend()
|
172 |
+
plt.grid(True, alpha=0.3)
|
173 |
+
|
174 |
+
# Monthly climatology
|
175 |
+
plt.subplot(2, 2, 2)
|
176 |
+
df['month'] = df['time'].dt.month
|
177 |
+
monthly_climate = df.groupby('month')['t2m'].agg(['mean', 'std']).reset_index()
|
178 |
+
|
179 |
+
plt.plot(monthly_climate['month'], monthly_climate['mean'], 'b-', linewidth=2, label='Average')
|
180 |
+
plt.fill_between(monthly_climate['month'],
|
181 |
+
monthly_climate['mean'] - monthly_climate['std'],
|
182 |
+
monthly_climate['mean'] + monthly_climate['std'],
|
183 |
+
alpha=0.3, label='±1 std dev')
|
184 |
+
|
185 |
+
plt.title('Monthly Temperature Climatology')
|
186 |
+
plt.xlabel('Month')
|
187 |
+
plt.ylabel('Temperature (°C)')
|
188 |
+
plt.legend()
|
189 |
+
plt.grid(True, alpha=0.3)
|
190 |
+
plt.xticks(range(1, 13), ['J', 'F', 'M', 'A', 'M', 'J',
|
191 |
+
'J', 'A', 'S', 'O', 'N', 'D'])
|
192 |
+
|
193 |
+
# Temperature distribution
|
194 |
+
plt.subplot(2, 2, 3)
|
195 |
+
plt.hist(df['t2m'], bins=50, alpha=0.7, density=True)
|
196 |
+
plt.axvline(df['t2m'].mean(), color='red', linestyle='--', linewidth=2, label=f'Mean: {df["t2m"].mean():.1f}°C')
|
197 |
+
plt.title('Temperature Distribution')
|
198 |
+
plt.xlabel('Temperature (°C)')
|
199 |
+
plt.ylabel('Density')
|
200 |
+
plt.legend()
|
201 |
+
plt.grid(True, alpha=0.3)
|
202 |
+
|
203 |
+
# Decade comparison
|
204 |
+
plt.subplot(2, 2, 4)
|
205 |
+
df['decade'] = (df['year'] // 10) * 10
|
206 |
+
decade_temps = df.groupby('decade')['t2m'].mean().reset_index()
|
207 |
+
|
208 |
+
plt.bar(decade_temps['decade'], decade_temps['t2m'], width=8, alpha=0.7)
|
209 |
+
plt.title('Average Temperature by Decade')
|
210 |
+
plt.xlabel('Decade')
|
211 |
+
plt.ylabel('Temperature (°C)')
|
212 |
+
plt.grid(True, alpha=0.3)
|
213 |
+
|
214 |
+
plt.tight_layout()
|
215 |
+
plt.savefig('paris_climate_analysis.png', dpi=300, bbox_inches='tight')
|
216 |
+
plt.show()
|
217 |
+
|
218 |
+
# Calculate warming trend
|
219 |
+
warming_rate = p.coef[1] # Slope of trend line
|
220 |
+
total_warming = warming_rate * (annual_temps['year'].max() - annual_temps['year'].min())
|
221 |
+
|
222 |
+
print(f"\nClimate Analysis Results:")
|
223 |
+
print(f"Period: {annual_temps['year'].min()}-{annual_temps['year'].max()}")
|
224 |
+
print(f"Average temperature: {df['t2m'].mean():.1f}°C")
|
225 |
+
print(f"Warming rate: {warming_rate:.3f}°C/year")
|
226 |
+
print(f"Total warming: {total_warming:.1f}°C over {annual_temps['year'].max() - annual_temps['year'].min()} years")
|
227 |
+
|
228 |
+
return df
|
229 |
+
|
230 |
+
def main():
|
231 |
+
"""Run all examples."""
|
232 |
+
print("Weather Geo ERA5 Dataset - Example Usage")
|
233 |
+
print("=" * 60)
|
234 |
+
|
235 |
+
# Display dataset info
|
236 |
+
info = get_dataset_info()
|
237 |
+
print("Dataset Information:")
|
238 |
+
for key, value in info.items():
|
239 |
+
print(f" {key}: {value}")
|
240 |
+
|
241 |
+
try:
|
242 |
+
# Example 1: Single city
|
243 |
+
df1 = example_single_city()
|
244 |
+
|
245 |
+
# Example 2: Multiple cities
|
246 |
+
df2 = example_multiple_cities()
|
247 |
+
|
248 |
+
# Example 3: Climate analysis
|
249 |
+
df3 = example_climate_analysis()
|
250 |
+
|
251 |
+
print("\n" + "=" * 60)
|
252 |
+
print("All examples completed successfully!")
|
253 |
+
print("Generated plots:")
|
254 |
+
print(" - paris_temperature_2023.png")
|
255 |
+
print(" - cities_temperature_comparison.png")
|
256 |
+
print(" - paris_climate_analysis.png")
|
257 |
+
print("=" * 60)
|
258 |
+
|
259 |
+
except Exception as e:
|
260 |
+
print(f"\nError running examples: {e}")
|
261 |
+
print("Make sure you have installed the required packages:")
|
262 |
+
print(" pip install pandas huggingface-hub matplotlib seaborn")
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
main()
|
weather_geo_utils.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Weather Geo ERA5 Dataset Utilities
|
5 |
+
|
6 |
+
Helper functions for working with the geographically partitioned ERA5 weather dataset.
|
7 |
+
This module provides convenient access patterns for the HuggingFace hosted dataset.
|
8 |
+
|
9 |
+
Dataset: https://huggingface.co/datasets/NaaVrug/weather-geo-era5
|
10 |
+
License: CC-BY-4.0
|
11 |
+
Attribution: Contains modified Copernicus Climate Change Service information 2024
|
12 |
+
"""
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import List, Tuple, Optional, Union
|
17 |
+
from datetime import datetime, date
|
18 |
+
import warnings
|
19 |
+
|
20 |
+
try:
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
HF_AVAILABLE = True
|
23 |
+
except ImportError:
|
24 |
+
HF_AVAILABLE = False
|
25 |
+
warnings.warn("huggingface_hub not available. Install with: pip install huggingface-hub")
|
26 |
+
|
27 |
+
# Dataset configuration
|
28 |
+
REPO_ID = "NaaVrug/weather-geo-era5"
|
29 |
+
REPO_TYPE = "dataset"
|
30 |
+
|
31 |
+
# Geographic constants (30° lat × 45° lon tiles)
|
32 |
+
LAT_BANDS = [
|
33 |
+
("m90_m60", -90, -60), # Antarctic
|
34 |
+
("m60_m30", -60, -30), # Southern mid-latitudes
|
35 |
+
("m30_p00", -30, 0), # Southern tropics
|
36 |
+
("p00_p30", 0, 30), # Northern tropics
|
37 |
+
("p30_p60", 30, 60), # Northern mid-latitudes
|
38 |
+
("p60_p90", 60, 90), # Arctic
|
39 |
+
]
|
40 |
+
|
41 |
+
LON_BANDS = [
|
42 |
+
("000_045", 0, 45), # Europe/Africa West
|
43 |
+
("045_090", 45, 90), # Middle East/Central Asia
|
44 |
+
("090_135", 90, 135), # East Asia
|
45 |
+
("135_180", 135, 180), # Western Pacific
|
46 |
+
("180_225", 180, 225), # Central Pacific
|
47 |
+
("225_270", 225, 270), # Eastern Pacific
|
48 |
+
("270_315", 270, 315), # Americas West
|
49 |
+
("315_360", 315, 360), # Americas East/Atlantic
|
50 |
+
]
|
51 |
+
|
52 |
+
def get_tile_name(lat: float, lon: float) -> str:
|
53 |
+
"""
|
54 |
+
Get the tile filename for given coordinates.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
lat: Latitude in degrees (-90 to 90)
|
58 |
+
lon: Longitude in degrees (-180 to 180 or 0 to 360)
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Tile filename (e.g., "lat_p30_p60__lon_000_045.parquet")
|
62 |
+
|
63 |
+
Examples:
|
64 |
+
>>> get_tile_name(48.8566, 2.3522) # Paris
|
65 |
+
'lat_p30_p60__lon_000_045.parquet'
|
66 |
+
>>> get_tile_name(40.7128, -74.0060) # NYC
|
67 |
+
'lat_p30_p60__lon_270_315.parquet'
|
68 |
+
>>> get_tile_name(-33.8688, 151.2093) # Sydney
|
69 |
+
'lat_m60_m30__lon_135_180.parquet'
|
70 |
+
"""
|
71 |
+
# Validate inputs
|
72 |
+
if not -90 <= lat <= 90:
|
73 |
+
raise ValueError(f"Latitude must be between -90 and 90, got {lat}")
|
74 |
+
|
75 |
+
# Normalize longitude to 0-360 range
|
76 |
+
lon = lon % 360
|
77 |
+
|
78 |
+
# Find latitude band
|
79 |
+
lat_band = None
|
80 |
+
for band_name, lat_min, lat_max in LAT_BANDS:
|
81 |
+
if lat_min <= lat < lat_max or (lat == 90 and lat_max == 90):
|
82 |
+
lat_band = band_name
|
83 |
+
break
|
84 |
+
|
85 |
+
if lat_band is None:
|
86 |
+
raise ValueError(f"Could not determine latitude band for {lat}")
|
87 |
+
|
88 |
+
# Find longitude band
|
89 |
+
lon_band = None
|
90 |
+
for band_name, lon_min, lon_max in LON_BANDS:
|
91 |
+
if lon_min <= lon < lon_max or (lon == 360 and lon_max == 360):
|
92 |
+
lon_band = band_name
|
93 |
+
break
|
94 |
+
|
95 |
+
if lon_band is None:
|
96 |
+
raise ValueError(f"Could not determine longitude band for {lon}")
|
97 |
+
|
98 |
+
return f"lat_{lat_band}__lon_{lon_band}.parquet"
|
99 |
+
|
100 |
+
def get_tiles_for_region(lat_min: float, lat_max: float,
|
101 |
+
lon_min: float, lon_max: float) -> List[str]:
|
102 |
+
"""
|
103 |
+
Get all tile names that overlap with a rectangular region.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
lat_min, lat_max: Latitude bounds
|
107 |
+
lon_min, lon_max: Longitude bounds
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
List of tile filenames
|
111 |
+
|
112 |
+
Example:
|
113 |
+
>>> # Europe region
|
114 |
+
>>> tiles = get_tiles_for_region(35, 70, -10, 40)
|
115 |
+
>>> print(len(tiles)) # Multiple tiles covering Europe
|
116 |
+
"""
|
117 |
+
# Normalize longitude
|
118 |
+
lon_min = lon_min % 360
|
119 |
+
lon_max = lon_max % 360
|
120 |
+
|
121 |
+
tiles = set()
|
122 |
+
|
123 |
+
# Handle longitude wrap-around
|
124 |
+
if lon_min > lon_max:
|
125 |
+
# Region crosses 0° longitude
|
126 |
+
for lat_band_name, lat_band_min, lat_band_max in LAT_BANDS:
|
127 |
+
if not (lat_max < lat_band_min or lat_min >= lat_band_max):
|
128 |
+
for lon_band_name, lon_band_min, lon_band_max in LON_BANDS:
|
129 |
+
if lon_band_min >= lon_min or lon_band_max <= lon_max:
|
130 |
+
tiles.add(f"lat_{lat_band_name}__lon_{lon_band_name}.parquet")
|
131 |
+
else:
|
132 |
+
# Normal case
|
133 |
+
for lat_band_name, lat_band_min, lat_band_max in LAT_BANDS:
|
134 |
+
if not (lat_max < lat_band_min or lat_min >= lat_band_max):
|
135 |
+
for lon_band_name, lon_band_min, lon_band_max in LON_BANDS:
|
136 |
+
if not (lon_max < lon_band_min or lon_min >= lon_band_max):
|
137 |
+
tiles.add(f"lat_{lat_band_name}__lon_{lon_band_name}.parquet")
|
138 |
+
|
139 |
+
return sorted(list(tiles))
|
140 |
+
|
141 |
+
def load_point_data(lat: float, lon: float,
|
142 |
+
start_date: Optional[Union[str, date, datetime]] = None,
|
143 |
+
end_date: Optional[Union[str, date, datetime]] = None,
|
144 |
+
cache_dir: Optional[str] = None) -> pd.DataFrame:
|
145 |
+
"""
|
146 |
+
Load weather data for a specific point.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
lat: Latitude in degrees
|
150 |
+
lon: Longitude in degrees
|
151 |
+
start_date: Start date (YYYY-MM-DD or datetime object)
|
152 |
+
end_date: End date (YYYY-MM-DD or datetime object)
|
153 |
+
cache_dir: Local cache directory for downloaded files
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
DataFrame with weather data for the point
|
157 |
+
|
158 |
+
Example:
|
159 |
+
>>> # Load 2020 data for Paris
|
160 |
+
>>> df = load_point_data(48.8566, 2.3522, "2020-01-01", "2020-12-31")
|
161 |
+
>>> print(f"Loaded {len(df)} records")
|
162 |
+
"""
|
163 |
+
if not HF_AVAILABLE:
|
164 |
+
raise ImportError("huggingface_hub required. Install with: pip install huggingface-hub")
|
165 |
+
|
166 |
+
# Get tile name
|
167 |
+
tile_name = get_tile_name(lat, lon)
|
168 |
+
|
169 |
+
# Download tile
|
170 |
+
file_path = hf_hub_download(
|
171 |
+
repo_id=REPO_ID,
|
172 |
+
filename=f"tiles/{tile_name}",
|
173 |
+
repo_type=REPO_TYPE,
|
174 |
+
cache_dir=cache_dir
|
175 |
+
)
|
176 |
+
|
177 |
+
# Load data
|
178 |
+
df = pd.read_parquet(file_path)
|
179 |
+
|
180 |
+
# Filter for approximate coordinates (within 0.25° grid)
|
181 |
+
lat_tolerance = 0.125 # Half grid resolution
|
182 |
+
lon_tolerance = 0.125
|
183 |
+
|
184 |
+
df = df[
|
185 |
+
(df['latitude'].between(lat - lat_tolerance, lat + lat_tolerance)) &
|
186 |
+
(df['longitude'].between(lon - lon_tolerance, lon + lon_tolerance))
|
187 |
+
]
|
188 |
+
|
189 |
+
# Filter by date range if specified
|
190 |
+
if start_date is not None:
|
191 |
+
df = df[df['time'] >= pd.to_datetime(start_date)]
|
192 |
+
if end_date is not None:
|
193 |
+
df = df[df['time'] <= pd.to_datetime(end_date)]
|
194 |
+
|
195 |
+
return df.sort_values('time').reset_index(drop=True)
|
196 |
+
|
197 |
+
def load_region_data(lat_min: float, lat_max: float,
|
198 |
+
lon_min: float, lon_max: float,
|
199 |
+
start_date: Optional[Union[str, date, datetime]] = None,
|
200 |
+
end_date: Optional[Union[str, date, datetime]] = None,
|
201 |
+
cache_dir: Optional[str] = None) -> pd.DataFrame:
|
202 |
+
"""
|
203 |
+
Load weather data for a rectangular region.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
lat_min, lat_max: Latitude bounds
|
207 |
+
lon_min, lon_max: Longitude bounds
|
208 |
+
start_date: Start date filter
|
209 |
+
end_date: End date filter
|
210 |
+
cache_dir: Local cache directory
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
Combined DataFrame for the region
|
214 |
+
|
215 |
+
Example:
|
216 |
+
>>> # Load data for a region around Paris
|
217 |
+
>>> df = load_region_data(48, 49, 2, 3, "2023-01-01", "2023-12-31")
|
218 |
+
"""
|
219 |
+
if not HF_AVAILABLE:
|
220 |
+
raise ImportError("huggingface_hub required. Install with: pip install huggingface-hub")
|
221 |
+
|
222 |
+
# Get all tiles covering the region
|
223 |
+
tiles = get_tiles_for_region(lat_min, lat_max, lon_min, lon_max)
|
224 |
+
|
225 |
+
if not tiles:
|
226 |
+
raise ValueError(f"No tiles found for region: lat[{lat_min}, {lat_max}], lon[{lon_min}, {lon_max}]")
|
227 |
+
|
228 |
+
print(f"Loading {len(tiles)} tiles for region...")
|
229 |
+
|
230 |
+
dfs = []
|
231 |
+
for tile_name in tiles:
|
232 |
+
print(f" Loading {tile_name}...")
|
233 |
+
|
234 |
+
# Download tile
|
235 |
+
file_path = hf_hub_download(
|
236 |
+
repo_id=REPO_ID,
|
237 |
+
filename=f"tiles/{tile_name}",
|
238 |
+
repo_type=REPO_TYPE,
|
239 |
+
cache_dir=cache_dir
|
240 |
+
)
|
241 |
+
|
242 |
+
# Load and filter data
|
243 |
+
df = pd.read_parquet(file_path)
|
244 |
+
|
245 |
+
# Filter by geographic bounds
|
246 |
+
df = df[
|
247 |
+
(df['latitude'].between(lat_min, lat_max)) &
|
248 |
+
(df['longitude'].between(lon_min, lon_max))
|
249 |
+
]
|
250 |
+
|
251 |
+
# Filter by date range if specified
|
252 |
+
if start_date is not None:
|
253 |
+
df = df[df['time'] >= pd.to_datetime(start_date)]
|
254 |
+
if end_date is not None:
|
255 |
+
df = df[df['time'] <= pd.to_datetime(end_date)]
|
256 |
+
|
257 |
+
if len(df) > 0:
|
258 |
+
dfs.append(df)
|
259 |
+
|
260 |
+
if not dfs:
|
261 |
+
raise ValueError("No data found in the specified region and time range")
|
262 |
+
|
263 |
+
# Combine all data
|
264 |
+
result = pd.concat(dfs, ignore_index=True)
|
265 |
+
return result.sort_values(['time', 'latitude', 'longitude']).reset_index(drop=True)
|
266 |
+
|
267 |
+
def load_cities_data(cities: List[Tuple[float, float, str]],
|
268 |
+
start_date: Optional[Union[str, date, datetime]] = None,
|
269 |
+
end_date: Optional[Union[str, date, datetime]] = None,
|
270 |
+
cache_dir: Optional[str] = None) -> pd.DataFrame:
|
271 |
+
"""
|
272 |
+
Load weather data for multiple cities.
|
273 |
+
|
274 |
+
Args:
|
275 |
+
cities: List of (lat, lon, name) tuples
|
276 |
+
start_date: Start date filter
|
277 |
+
end_date: End date filter
|
278 |
+
cache_dir: Local cache directory
|
279 |
+
|
280 |
+
Returns:
|
281 |
+
DataFrame with data for all cities, including 'city' column
|
282 |
+
|
283 |
+
Example:
|
284 |
+
>>> cities = [
|
285 |
+
... (48.8566, 2.3522, "Paris"),
|
286 |
+
... (51.5074, -0.1278, "London"),
|
287 |
+
... (52.5200, 13.4050, "Berlin"),
|
288 |
+
... ]
|
289 |
+
>>> df = load_cities_data(cities, "2023-01-01", "2023-12-31")
|
290 |
+
"""
|
291 |
+
if not HF_AVAILABLE:
|
292 |
+
raise ImportError("huggingface_hub required. Install with: pip install huggingface-hub")
|
293 |
+
|
294 |
+
dfs = []
|
295 |
+
for lat, lon, city_name in cities:
|
296 |
+
print(f"Loading data for {city_name}...")
|
297 |
+
|
298 |
+
try:
|
299 |
+
df = load_point_data(lat, lon, start_date, end_date, cache_dir)
|
300 |
+
df['city'] = city_name
|
301 |
+
dfs.append(df)
|
302 |
+
except Exception as e:
|
303 |
+
print(f" Warning: Failed to load data for {city_name}: {e}")
|
304 |
+
|
305 |
+
if not dfs:
|
306 |
+
raise ValueError("No data loaded for any cities")
|
307 |
+
|
308 |
+
return pd.concat(dfs, ignore_index=True)
|
309 |
+
|
310 |
+
def convert_temperature_units(df: pd.DataFrame,
|
311 |
+
from_unit: str = 'K',
|
312 |
+
to_unit: str = 'C') -> pd.DataFrame:
|
313 |
+
"""
|
314 |
+
Convert temperature units in the dataset.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
df: DataFrame with temperature columns
|
318 |
+
from_unit: Source unit ('K', 'C', 'F')
|
319 |
+
to_unit: Target unit ('K', 'C', 'F')
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
DataFrame with converted temperatures
|
323 |
+
"""
|
324 |
+
df = df.copy()
|
325 |
+
temp_columns = ['t2m', 'd2m']
|
326 |
+
|
327 |
+
for col in temp_columns:
|
328 |
+
if col in df.columns:
|
329 |
+
# Convert to Kelvin first
|
330 |
+
if from_unit == 'C':
|
331 |
+
temps_k = df[col] + 273.15
|
332 |
+
elif from_unit == 'F':
|
333 |
+
temps_k = (df[col] - 32) * 5/9 + 273.15
|
334 |
+
else: # Assume Kelvin
|
335 |
+
temps_k = df[col]
|
336 |
+
|
337 |
+
# Convert from Kelvin to target
|
338 |
+
if to_unit == 'C':
|
339 |
+
df[col] = temps_k - 273.15
|
340 |
+
elif to_unit == 'F':
|
341 |
+
df[col] = (temps_k - 273.15) * 9/5 + 32
|
342 |
+
else: # Keep Kelvin
|
343 |
+
df[col] = temps_k
|
344 |
+
|
345 |
+
return df
|
346 |
+
|
347 |
+
def get_dataset_info() -> dict:
|
348 |
+
"""Get information about the dataset."""
|
349 |
+
return {
|
350 |
+
"name": "Weather Geo ERA5 Dataset",
|
351 |
+
"repo_id": REPO_ID,
|
352 |
+
"url": f"https://huggingface.co/datasets/{REPO_ID}",
|
353 |
+
"license": "CC-BY-4.0",
|
354 |
+
"time_range": "1940-2024",
|
355 |
+
"resolution": "0.25° x 0.25°",
|
356 |
+
"total_tiles": len(LAT_BANDS) * len(LON_BANDS),
|
357 |
+
"variables": ["t2m", "tp", "d2m", "msl", "u10", "v10"],
|
358 |
+
"attribution": "Contains modified Copernicus Climate Change Service information 2024"
|
359 |
+
}
|
360 |
+
|
361 |
+
# Example usage
|
362 |
+
if __name__ == "__main__":
|
363 |
+
# Print dataset info
|
364 |
+
info = get_dataset_info()
|
365 |
+
print("Weather Geo ERA5 Dataset")
|
366 |
+
print("=" * 40)
|
367 |
+
for key, value in info.items():
|
368 |
+
print(f"{key}: {value}")
|
369 |
+
|
370 |
+
print("\nExample tile names:")
|
371 |
+
cities = [
|
372 |
+
(48.8566, 2.3522, "Paris"),
|
373 |
+
(40.7128, -74.0060, "New York"),
|
374 |
+
(-33.8688, 151.2093, "Sydney"),
|
375 |
+
(35.6762, 139.6503, "Tokyo"),
|
376 |
+
]
|
377 |
+
|
378 |
+
for lat, lon, name in cities:
|
379 |
+
tile = get_tile_name(lat, lon)
|
380 |
+
print(f" {name} ({lat:.4f}, {lon:.4f}): {tile}")
|