#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Example usage of the Weather Geo ERA5 Dataset This script demonstrates how to use the weather_geo_utils module to load and analyze weather data from the HuggingFace dataset. Requirements: pip install pandas huggingface-hub matplotlib seaborn """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from weather_geo_utils import ( load_point_data, load_cities_data, convert_temperature_units, get_dataset_info ) def example_single_city(): """Example: Load data for a single city (Paris).""" print("=" * 60) print("EXAMPLE 1: Single City Analysis (Paris)") print("=" * 60) # Load 2023 data for Paris print("Loading Paris weather data for 2023...") df = load_point_data( lat=48.8566, lon=2.3522, start_date="2023-01-01", end_date="2023-12-31" ) # Convert temperatures to Celsius df = convert_temperature_units(df, from_unit='K', to_unit='C') print(f"Loaded {len(df)} records") print(f"Date range: {df['time'].min()} to {df['time'].max()}") print(f"Temperature range: {df['t2m'].min():.1f}°C to {df['t2m'].max():.1f}°C") print(f"Average temperature: {df['t2m'].mean():.1f}°C") # Plot temperature timeline plt.figure(figsize=(12, 6)) plt.plot(df['time'], df['t2m'], linewidth=0.5, alpha=0.7) plt.title('Paris Temperature 2023') plt.xlabel('Date') plt.ylabel('Temperature (°C)') plt.grid(True, alpha=0.3) plt.tight_layout() plt.savefig('paris_temperature_2023.png', dpi=300, bbox_inches='tight') plt.show() return df def example_multiple_cities(): """Example: Compare multiple European cities.""" print("\n" + "=" * 60) print("EXAMPLE 2: Multiple Cities Comparison") print("=" * 60) # Define cities cities = [ (48.8566, 2.3522, "Paris"), (51.5074, -0.1278, "London"), (52.5200, 13.4050, "Berlin"), (41.9028, 12.4964, "Rome"), (59.3293, 18.0686, "Stockholm"), ] print(f"Loading data for {len(cities)} cities...") # Load 2023 data for all cities df = load_cities_data(cities, start_date="2023-01-01", end_date="2023-12-31") # Convert temperatures to Celsius df = convert_temperature_units(df, from_unit='K', to_unit='C') print(f"Total records loaded: {len(df)}") # Calculate monthly averages df['month'] = df['time'].dt.month monthly_temps = df.groupby(['city', 'month'])['t2m'].mean().reset_index() monthly_temps['month_name'] = pd.to_datetime(monthly_temps['month'], format='%m').dt.strftime('%b') # Plot comparison plt.figure(figsize=(12, 8)) # Temperature comparison plt.subplot(2, 1, 1) for city in df['city'].unique(): city_data = monthly_temps[monthly_temps['city'] == city] plt.plot(city_data['month'], city_data['t2m'], marker='o', label=city, linewidth=2) plt.title('Monthly Average Temperature Comparison 2023') plt.xlabel('Month') plt.ylabel('Temperature (°C)') plt.legend() plt.grid(True, alpha=0.3) plt.xticks(range(1, 13), ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']) # Annual statistics plt.subplot(2, 1, 2) annual_stats = df.groupby('city')['t2m'].agg(['mean', 'min', 'max']).reset_index() x = range(len(annual_stats)) plt.bar(x, annual_stats['mean'], alpha=0.7, label='Average') plt.errorbar(x, annual_stats['mean'], yerr=[annual_stats['mean'] - annual_stats['min'], annual_stats['max'] - annual_stats['mean']], fmt='none', color='black', capsize=5, alpha=0.8) plt.title('Annual Temperature Statistics 2023') plt.xlabel('City') plt.ylabel('Temperature (°C)') plt.xticks(x, annual_stats['city'], rotation=45) plt.grid(True, alpha=0.3) plt.tight_layout() plt.savefig('cities_temperature_comparison.png', dpi=300, bbox_inches='tight') plt.show() # Print summary statistics print("\nAnnual Temperature Summary (°C):") print(annual_stats.round(1)) return df def example_climate_analysis(): """Example: Long-term climate analysis.""" print("\n" + "=" * 60) print("EXAMPLE 3: Long-term Climate Analysis (Paris)") print("=" * 60) print("Loading historical data for Paris (1980-2023)...") df = load_point_data( lat=48.8566, lon=2.3522, start_date="1980-01-01", end_date="2023-12-31" ) # Convert temperatures to Celsius df = convert_temperature_units(df, from_unit='K', to_unit='C') print(f"Loaded {len(df)} records over {df['time'].dt.year.nunique()} years") # Calculate annual averages df['year'] = df['time'].dt.year annual_temps = df.groupby('year')['t2m'].mean().reset_index() # Plot long-term trend plt.figure(figsize=(14, 10)) # Annual temperature trend plt.subplot(2, 2, 1) plt.plot(annual_temps['year'], annual_temps['t2m'], linewidth=1, alpha=0.7) # Add trend line from numpy.polynomial import Polynomial p = Polynomial.fit(annual_temps['year'], annual_temps['t2m'], 1) plt.plot(annual_temps['year'], p(annual_temps['year']), 'r--', linewidth=2, label='Trend') plt.title('Annual Average Temperature (Paris)') plt.xlabel('Year') plt.ylabel('Temperature (°C)') plt.legend() plt.grid(True, alpha=0.3) # Monthly climatology plt.subplot(2, 2, 2) df['month'] = df['time'].dt.month monthly_climate = df.groupby('month')['t2m'].agg(['mean', 'std']).reset_index() plt.plot(monthly_climate['month'], monthly_climate['mean'], 'b-', linewidth=2, label='Average') plt.fill_between(monthly_climate['month'], monthly_climate['mean'] - monthly_climate['std'], monthly_climate['mean'] + monthly_climate['std'], alpha=0.3, label='±1 std dev') plt.title('Monthly Temperature Climatology') plt.xlabel('Month') plt.ylabel('Temperature (°C)') plt.legend() plt.grid(True, alpha=0.3) plt.xticks(range(1, 13), ['J', 'F', 'M', 'A', 'M', 'J', 'J', 'A', 'S', 'O', 'N', 'D']) # Temperature distribution plt.subplot(2, 2, 3) plt.hist(df['t2m'], bins=50, alpha=0.7, density=True) plt.axvline(df['t2m'].mean(), color='red', linestyle='--', linewidth=2, label=f'Mean: {df["t2m"].mean():.1f}°C') plt.title('Temperature Distribution') plt.xlabel('Temperature (°C)') plt.ylabel('Density') plt.legend() plt.grid(True, alpha=0.3) # Decade comparison plt.subplot(2, 2, 4) df['decade'] = (df['year'] // 10) * 10 decade_temps = df.groupby('decade')['t2m'].mean().reset_index() plt.bar(decade_temps['decade'], decade_temps['t2m'], width=8, alpha=0.7) plt.title('Average Temperature by Decade') plt.xlabel('Decade') plt.ylabel('Temperature (°C)') plt.grid(True, alpha=0.3) plt.tight_layout() plt.savefig('paris_climate_analysis.png', dpi=300, bbox_inches='tight') plt.show() # Calculate warming trend warming_rate = p.coef[1] # Slope of trend line total_warming = warming_rate * (annual_temps['year'].max() - annual_temps['year'].min()) print(f"\nClimate Analysis Results:") print(f"Period: {annual_temps['year'].min()}-{annual_temps['year'].max()}") print(f"Average temperature: {df['t2m'].mean():.1f}°C") print(f"Warming rate: {warming_rate:.3f}°C/year") print(f"Total warming: {total_warming:.1f}°C over {annual_temps['year'].max() - annual_temps['year'].min()} years") return df def main(): """Run all examples.""" print("Weather Geo ERA5 Dataset - Example Usage") print("=" * 60) # Display dataset info info = get_dataset_info() print("Dataset Information:") for key, value in info.items(): print(f" {key}: {value}") try: # Example 1: Single city df1 = example_single_city() # Example 2: Multiple cities df2 = example_multiple_cities() # Example 3: Climate analysis df3 = example_climate_analysis() print("\n" + "=" * 60) print("All examples completed successfully!") print("Generated plots:") print(" - paris_temperature_2023.png") print(" - cities_temperature_comparison.png") print(" - paris_climate_analysis.png") print("=" * 60) except Exception as e: print(f"\nError running examples: {e}") print("Make sure you have installed the required packages:") print(" pip install pandas huggingface-hub matplotlib seaborn") if __name__ == "__main__": main()