|
import os
|
|
import torch
|
|
import pandas as pd
|
|
import torchaudio
|
|
from torch.utils.data import Dataset
|
|
from typing import List, Optional
|
|
|
|
class Libris2sDataset(torch.utils.data.Dataset):
|
|
def __init__(self, data_dir: str, split: str, transform=None, book_ids: Optional[List[str]]=None):
|
|
"""
|
|
Initialize the LibriS2S dataset.
|
|
|
|
Args:
|
|
data_dir (str): Root directory containing the dataset
|
|
split (str): Path to the CSV file containing alignments
|
|
transform (callable, optional): Optional transform to be applied on the audio
|
|
book_ids (List[str], optional): List of book IDs to include. If None, includes all books.
|
|
Example: ['9', '10', '11'] will only load these books.
|
|
"""
|
|
self.data_dir = data_dir
|
|
self.transform = transform
|
|
self.book_ids = set(book_ids) if book_ids is not None else None
|
|
|
|
|
|
self.alignments = pd.read_csv(split)
|
|
|
|
|
|
self.de_audio_paths = []
|
|
self.en_audio_paths = []
|
|
self.de_transcripts = []
|
|
self.en_transcripts = []
|
|
self.alignment_scores = []
|
|
|
|
|
|
for _, row in self.alignments.iterrows():
|
|
|
|
book_id = str(row['book_id'])
|
|
|
|
|
|
if self.book_ids is not None and book_id not in self.book_ids:
|
|
continue
|
|
|
|
|
|
de_audio = os.path.join(data_dir, row['DE_audio'])
|
|
en_audio = os.path.join(data_dir, row['EN_audio'])
|
|
|
|
|
|
if os.path.exists(de_audio) and os.path.exists(en_audio):
|
|
self.de_audio_paths.append(de_audio)
|
|
self.en_audio_paths.append(en_audio)
|
|
self.de_transcripts.append(row['DE_transcript'])
|
|
self.en_transcripts.append(row['EN_transcript'])
|
|
self.alignment_scores.append(float(row['score']))
|
|
else:
|
|
print(f"Skipping {de_audio} or {en_audio} because they don't exist")
|
|
|
|
def __len__(self):
|
|
"""Return the number of items in the dataset."""
|
|
return len(self.de_audio_paths)
|
|
|
|
def __getitem__(self, idx):
|
|
"""
|
|
Get a single item from the dataset.
|
|
|
|
Args:
|
|
idx (int): Index of the item to get
|
|
|
|
Returns:
|
|
dict: A dictionary containing:
|
|
- de_audio: German audio waveform
|
|
- de_sample_rate: German audio sample rate
|
|
- en_audio: English audio waveform
|
|
- en_sample_rate: English audio sample rate
|
|
- de_transcript: German transcript
|
|
- en_transcript: English transcript
|
|
- alignment_score: Alignment score between the pair
|
|
"""
|
|
|
|
de_audio, de_sr = torchaudio.load(self.de_audio_paths[idx])
|
|
en_audio, en_sr = torchaudio.load(self.en_audio_paths[idx])
|
|
|
|
|
|
if self.transform:
|
|
de_audio = self.transform(de_audio)
|
|
en_audio = self.transform(en_audio)
|
|
|
|
return {
|
|
'de_audio': de_audio,
|
|
'de_sample_rate': de_sr,
|
|
'en_audio': en_audio,
|
|
'en_sample_rate': en_sr,
|
|
'de_transcript': self.de_transcripts[idx],
|
|
'en_transcript': self.en_transcripts[idx],
|
|
'alignment_score': self.alignment_scores[idx]
|
|
} |