File size: 7,911 Bytes
b33ad61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

"""# %% [markdown]
# # Web Scraping, Processing, and Embedding Project
#
# This notebook demonstrates a workflow for web scraping text data from a website, processing it into manageable chunks, and then creating numerical representations (embeddings) of these chunks using a sentence transformer model. Finally, the embedded data is saved to Google Drive.
#
# %% [markdown]
# # Install necessary libraries
# This cell installs all the required Python packages.
# %%
!pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests

# %% [markdown]
# # Web scraping and data extraction script
# This script crawls a website and extracts text content from each page.
#
# %%
# prompt: write a script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data

import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse

def is_valid(url):

    '''Checks whether `url` is a valid URL.'''

    try:

        result = urlparse(url)

        return all([result.scheme, result.netloc])

    except:

        return False



def get_all_website_links(url):
    '''

    Returns all URLs that is found on `url` in which it belongs to the same website

    '''

    urls = set()

    domain_name = urlparse(url).netloc

    try:

        soup = BeautifulSoup(requests.get(url).content, "html.parser")

        for a_tag in soup.findAll("a"):

            href = a_tag.attrs.get("href")

            if href == "" or href is None:

                continue

            href = urljoin(url, href)

            parsed_href = urlparse(href)

            href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path

            if not is_valid(href):

                continue

            if parsed_href.netloc == domain_name:

                urls.add(href)

    except Exception as e:

        print(f"Error processing {url}: {e}")

    return urls


def scrape_page_data(url):
    '''Scrapes all text content from a given URL.'''

    try:

        response = requests.get(url)

        soup = BeautifulSoup(response.content, 'html.parser')

        # Extract all text from the page

        text = soup.get_text(separator='\n', strip=True)

        return text

    except Exception as e:

        print(f"Error scraping {url}: {e}")

        return None


def crawl_website(start_url, max_pages=100):

    '''Crawls a website and scrapes data from each page.'''

    visited_urls = set()
    urls_to_visit = {start_url}

    scraped_data = {}


    while urls_to_visit and len(visited_urls) < max_pages:

        current_url = urls_to_visit.pop()

        if current_url in visited_urls:

            continue


        print(f"Visiting: {current_url}")

        visited_urls.add(current_url)


        # Scrape data

        data = scrape_page_data(current_url)

        if data:

            scraped_data[current_url] = data


        # Find new links

        new_links = get_all_website_links(current_url)

        for link in new_links:

            if link not in visited_urls:

                urls_to_visit.add(link)


    return scraped_data


# Start the crawling process
start_url = "https://learn.microsoft.com/en-us/"

all_scraped_data = crawl_website(start_url)



# You can now process the `all_scraped_data` dictionary

# For example, print the number of pages scraped and the data from one page:

print(f"\nScraped data from {len(all_scraped_data)} pages.")

if all_scraped_data:

    first_url = list(all_scraped_data.keys())[0]
    print(f"\nData from the first scraped page ({first_url}):")

    # print(all_scraped_data[first_url][:500]) # Print first 500 characters


# %% [markdown]
# # Data processing and embedding script
# This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
# %%
# prompt: write a script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks

import torch
from sentence_transformers import SentenceTransformer

from datasets import Dataset

from tqdm.auto import tqdm



# Check for GPU availability

device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

# Load a pre-trained sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)

def chunk_text(text, chunk_size=500, chunk_overlap=50):

    '''Splits text into chunks with overlap.'''

    words = text.split()

    chunks = []

    i = 0

    while i < len(words):

        chunk = words[i:i + chunk_size]
        chunks.append(" ".join(chunk))

        i += chunk_size - chunk_overlap

        if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk

             chunks.append(" ".join(words[i:]))

             break


    return chunks


def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50):

    '''

    Converts scraped data into formatted chunks and embeds them.

    Returns a list of dictionaries, each containing chunk text, source URL, and embedding.

    '''

    processed_chunks = []
    for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"):

        if text:

            chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap)

            for chunk in chunks:

                processed_chunks.append({

                    'text': chunk,

                    'source': url,

                })

    return processed_chunks


def embed_chunks(processed_chunks, model, batch_size=32):

    '''Embeds the text chunks using the sentence transformer model.'''

    # Extract texts for embedding

    texts_to_embed = [chunk['text'] for chunk in processed_chunks]

    # Create a Hugging Face Dataset

    dataset = Dataset.from_dict({'text': texts_to_embed})


    # Define a function to apply embeddings

    def get_embeddings(batch):

        return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}


    # Apply the embedding function in batches

    dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)


    # Update the original processed_chunks list with embeddings

    for i, item in enumerate(processed_chunks):

        item['embedding'] = dataset[i]['embedding']


    return processed_chunks


# --- Main script for processing and embedding ---

# Process the scraped data into chunks
formatted_chunks = process_scraped_data(all_scraped_data)



# Embed the chunks

embedded_data = embed_chunks(formatted_chunks, model)

# `embedded_data` is now a list of dictionaries, where each dictionary

# represents a chunk with its text, source URL, and embedding.

# You can now use this data for similarity search, indexing, etc.



print(f"\nCreated {len(embedded_data)} embedded chunks.")
if embedded_data:

    print("\nExample of an embedded chunk:")

embedded_data[0]

# %% [markdown]
# # Save the embedded dataset to Google Drive
# This script saves the processed and embedded data to a JSON file in your Google Drive.
#
# %%
# prompt: write a script to save all converted, formatted, embedded dataset to the "Output" file on My Drive

import json
from google.colab import drive

# Mount Google Drive
drive.mount('/content/drive')

# Define the output file path
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'



# Ensure the output directory exists

import os

output_dir = os.path.dirname(output_file_path)
os.makedirs(output_dir, exist_ok=True)

# Save the embedded data to a JSON file
with open(output_file_path, 'w') as f:
    json.dump(embedded_data, f, indent=2)


print(f"\nSaved embedded dataset to: {output_file_path}")
"""