from collections.abc import Generator from pathlib import Path from typing import Any import datasets import numpy as np from datasets import Dataset from datasets.splits import NamedSplit from numpy.typing import NDArray from PIL import Image from tqdm import tqdm tissue_map = { "Bile-duct": "Bile Duct", "HeadNeck": "Head & Neck", "Adrenal_gland": "Adrenal Gland", } features = datasets.Features( { "image": datasets.Image(mode="RGB"), "instances": datasets.Sequence(datasets.Image(mode="1")), "categories": datasets.Sequence( datasets.ClassLabel( num_classes=5, names=[ "Neoplastic", "Inflammatory", "Connective", "Dead", "Epithelial", ], ) ), "tissue": datasets.ClassLabel( num_classes=19, names=[ "Adrenal Gland", "Bile Duct", "Bladder", "Breast", "Cervix", "Colon", "Esophagus", "Head & Neck", "Kidney", "Liver", "Lung", "Ovarian", "Pancreatic", "Prostate", "Skin", "Stomach", "Testis", "Thyroid", "Uterus", ], ), } ) def one_hot_mask( mask: NDArray[np.float64], ) -> tuple[NDArray[np.bool], NDArray[np.uint8]]: """Converts a mask to one-hot encoding. Returns: A dictionary with the following keys: - masks: A 3D array with shape (num_masks, height, width) containing the one-hot encoded masks. - labels: A 1D array with shape (num_masks,) containing the class labels. """ masks: list[NDArray[np.bool]] = [] labels: list[NDArray[np.uint8]] = [] for c in range(mask.shape[-1] - 1): masks.append(mask[..., c] == np.unique(mask[..., c])[1:, None, None]) labels.append(np.full(masks[-1].shape[0], c, dtype=np.uint8)) return np.concatenate(masks), np.concatenate(labels) def process(path: str, subfolder: str) -> Generator[dict[str, Any], None, None]: images = np.load(Path(path, "images", subfolder, "images.npy"), mmap_mode="r") masks = np.load(Path(path, "masks", subfolder, "masks.npy"), mmap_mode="r") types = np.load(Path(path, "images", subfolder, "types.npy")) for image, mask, tissue in tqdm( zip(images, masks, types, strict=True), total=len(images) ): mask, labels = one_hot_mask(mask) yield { "image": Image.fromarray(image.astype(np.uint8)), "instances": [Image.fromarray(m) for m in mask], "categories": labels, "tissue": tissue_map.get(tissue, tissue), } if __name__ == "__main__": fold1 = Dataset.from_generator( process, gen_kwargs={"path": "PanNuke/Fold 1", "subfolder": "fold1"}, features=features, split=NamedSplit("fold1"), keep_in_memory=True, ) fold1.push_to_hub("RationAI/PanNuke") fold2 = Dataset.from_generator( process, gen_kwargs={"path": "PanNuke/Fold 2", "subfolder": "fold2"}, features=features, split=NamedSplit("fold2"), keep_in_memory=True, ) fold2.push_to_hub("RationAI/PanNuke") fold3 = Dataset.from_generator( process, gen_kwargs={"path": "PanNuke/Fold 3", "subfolder": "fold3"}, features=features, split=NamedSplit("fold3"), keep_in_memory=True, ) fold3.push_to_hub("RationAI/PanNuke")