File size: 2,114 Bytes
4aa970b
 
 
 
 
 
 
 
 
 
 
 
 
a2ca2dd
 
4aa970b
a2ca2dd
4aa970b
 
8b6c186
 
4aa970b
 
 
 
 
 
a2ca2dd
 
4aa970b
a2ca2dd
4aa970b
 
8b6c186
 
4aa970b
 
 
 
 
 
a2ca2dd
 
4aa970b
a2ca2dd
4aa970b
 
8b6c186
 
4aa970b
 
 
 
 
65661c1
4aa970b
 
 
 
65661c1
4aa970b
 
 
 
65661c1
f71b822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
language:
- en
size_categories:
- n<1K
pretty_name: Adaptive Graph Pruning Training Dataset
dataset_info:
  - config_name: coding
    features:
      - name: task
        dtype: string
      - name: edge_weight
        sequence:
          sequence: float32
      - name: mask
        sequence: float32
    splits:
      - name: train
        num_bytes: 85430
        num_examples: 140
      
  - config_name: general_reasoning
    features:
      - name: task
        dtype: string
      - name: edge_weight
        sequence:
          sequence: float32
      - name: mask
        sequence: float32
    splits:
      - name: train
        num_bytes: 97455
        num_examples: 138
      
  - config_name: math_reasoning
    features:
      - name: task
        dtype: string
      - name: edge_weight
        sequence:
          sequence: float32
      - name: mask
        sequence: float32
    splits:
      - name: train
        num_bytes: 31794
        num_examples: 94
      
configs:
  - config_name: coding
    data_files:
      - split: train
        path: coding/train.json
        
  - config_name: general_reasoning
    data_files:
      - split: train
        path: general_reasoning/train.json
  
  - config_name: math_reasoning
    data_files:
      - split: train
        path: math_reasoning/train.json
---

# Dataset Card for AGP-Training

## Dataset Description

- **Homepage:** https://resurgamm.github.io/AGP/
- **Repository:** https://github.com/Resurgamm/AGP
- **Paper:** https://arxiv.org/abs/2506.02951

### Dataset Summary

AGP-Training is the dataset for training Adaptive Graph Pruning (AGP). We open-source our training set so that you can reproduce our work.

For further usage, please refer to [our repository](https://github.com/Resurgamm/AGP)

### Citation

If you find AGP helpful in your research, please consider citing:

```bibtex
@article{li2025adaptive,
  title={Adaptive Graph Pruning for Multi-Agent Communication},
  author={Li, Boyi and Zhao, Zhonghan and Lee, Der-Horng and Wang, Gaoang},
  journal={arXiv preprint arXiv:2506.02951},
  year={2025}
}
```