|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{inproceedings, |
|
author = {Alfina, Ika and Mulia, Rio and Fanany, Mohamad Ivan and Ekanata, Yudo}, |
|
year = {2017}, |
|
month = {10}, |
|
pages = {}, |
|
title = {Hate Speech Detection in the Indonesian Language: A Dataset and Preliminary Study}, |
|
doi = {10.1109/ICACSIS.2017.8355039} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "id_hatespeech" |
|
|
|
_DESCRIPTION = """\ |
|
The ID Hatespeech dataset is collection of 713 tweets related to a political event, the Jakarta Governor Election 2017 |
|
designed for hate speech detection NLP task. This dataset is crawled from Twitter, and then filtered |
|
and annotated manually. The dataset labelled into two; HS if the tweet contains hate speech and Non_HS if otherwise |
|
""" |
|
|
|
_HOMEPAGE = "https://www.researchgate.net/publication/320131169_Hate_Speech_Detection_in_the_Indonesian_Language_A_Dataset_and_Preliminary_Study" |
|
_LICENSE = "Unknown" |
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/ialfina/id-hatespeech-detection/master/IDHSD_RIO_unbalanced_713_2017.txt", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdHatespeech(datasets.GeneratorBasedBuilder): |
|
"""The ID Hatespeech dataset is collection of tweets related to a political event, the Jakarta Governor Election 2017 |
|
designed for hate speech detection NLP task.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="id_hatespeech_source", |
|
version=SOURCE_VERSION, |
|
description="ID Hatespeech source schema", |
|
schema="source", |
|
subset_id="id_hatespeech", |
|
), |
|
SEACrowdConfig( |
|
name="id_hatespeech_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="ID Hatespeech Nusantara schema", |
|
schema="seacrowd_text", |
|
subset_id="id_hatespeech", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_hatespeech_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"tweet": datasets.Value("string"), "label": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(["Non_HS", "HS"]) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
base_dir = Path(dl_manager.download_and_extract(urls)) |
|
data_files = {"train": base_dir} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = pd.read_csv(filepath, sep="\t", encoding="ISO-8859-1").reset_index() |
|
df.columns = ["id", "label", "tweet"] |
|
|
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = { |
|
"tweet": row.tweet, |
|
"label": row.label, |
|
} |
|
yield row.id, ex |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
for row in df.itertuples(): |
|
ex = { |
|
"id": str(row.id), |
|
"text": row.tweet, |
|
"label": row.label, |
|
} |
|
yield row.id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|