Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -9,12 +9,12 @@ tags:
|
|
9 |
- self-supervised-pretraining
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
|
20 |
## Languages
|
@@ -24,25 +24,25 @@ ind
|
|
24 |
## Supported Tasks
|
25 |
|
26 |
Self Supervised Pretraining
|
27 |
-
|
28 |
## Dataset Usage
|
29 |
### Using `datasets` library
|
30 |
```
|
31 |
-
|
32 |
-
|
33 |
```
|
34 |
### Using `seacrowd` library
|
35 |
```import seacrowd as sc
|
36 |
# Load the dataset using the default config
|
37 |
-
|
38 |
# Check all available subsets (config names) of the dataset
|
39 |
-
|
40 |
# Load the dataset using a specific config
|
41 |
-
|
42 |
```
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
## Dataset Homepage
|
48 |
|
|
|
9 |
- self-supervised-pretraining
|
10 |
---
|
11 |
|
12 |
+
Indo4B is a large-scale Indonesian self-supervised pre-training corpus
|
13 |
+
consists of around 3.6B words, with around 250M sentences. The corpus
|
14 |
+
covers both formal and colloquial Indonesian sentences compiled from
|
15 |
+
12 sources, of which two cover Indonesian colloquial language, eight
|
16 |
+
cover formal Indonesian language, and the rest have a mixed style of
|
17 |
+
both colloquial and formal.
|
18 |
|
19 |
|
20 |
## Languages
|
|
|
24 |
## Supported Tasks
|
25 |
|
26 |
Self Supervised Pretraining
|
27 |
+
|
28 |
## Dataset Usage
|
29 |
### Using `datasets` library
|
30 |
```
|
31 |
+
from datasets import load_dataset
|
32 |
+
dset = datasets.load_dataset("SEACrowd/indo4b", trust_remote_code=True)
|
33 |
```
|
34 |
### Using `seacrowd` library
|
35 |
```import seacrowd as sc
|
36 |
# Load the dataset using the default config
|
37 |
+
dset = sc.load_dataset("indo4b", schema="seacrowd")
|
38 |
# Check all available subsets (config names) of the dataset
|
39 |
+
print(sc.available_config_names("indo4b"))
|
40 |
# Load the dataset using a specific config
|
41 |
+
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
|
42 |
```
|
43 |
+
|
44 |
+
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
|
45 |
+
|
46 |
|
47 |
## Dataset Homepage
|
48 |
|