Upload lr_sum.py with huggingface_hub
Browse files
lr_sum.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import Dict, List, Tuple
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
from seacrowd.utils import schemas
|
20 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
21 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
22 |
+
|
23 |
+
_CITATION = """
|
24 |
+
@inproceedings{palen-michel-lignos-2023-lr,
|
25 |
+
author = {Palen-Michel, Chester and Lignos, Constantine},
|
26 |
+
title = {LR - Sum: Summarization for Less-Resourced Languages},
|
27 |
+
booktitle = {Findings of the Association for Computational Linguistics: ACL 2023},
|
28 |
+
year = {2023},
|
29 |
+
publisher = {Association for Computational Linguistics},
|
30 |
+
address = {Toronto, Canada},
|
31 |
+
doi = {10.18653/v1/2023.findings-acl.427},
|
32 |
+
pages = {6829--6844},
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_LOCAL = False
|
37 |
+
_LANGUAGES = ["ind", "khm", "lao", "mya", "tha", "vie"]
|
38 |
+
|
39 |
+
_DATASETNAME = "lr_sum"
|
40 |
+
_DESCRIPTION = """
|
41 |
+
LR-Sum is a news abstractive summarization dataset focused on low-resource languages. It contains human-written summaries
|
42 |
+
for 39 languages and the data is based on the Multilingual Open Text corpus
|
43 |
+
(ultimately derived from the Voice of America website).
|
44 |
+
"""
|
45 |
+
|
46 |
+
_HOMEPAGE = "https://huggingface.co/datasets/bltlab/lr-sum"
|
47 |
+
_LICENSE = Licenses.CC_BY_4_0.value
|
48 |
+
_URL = "https://huggingface.co/datasets/bltlab/lr-sum"
|
49 |
+
|
50 |
+
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION]
|
51 |
+
_SOURCE_VERSION = "1.0.0"
|
52 |
+
_SEACROWD_VERSION = "2024.06.20"
|
53 |
+
|
54 |
+
|
55 |
+
class LRSumDataset(datasets.GeneratorBasedBuilder):
|
56 |
+
"""Dataset of article-summary pairs for different low-resource languages."""
|
57 |
+
|
58 |
+
# Config to load individual datasets per language
|
59 |
+
BUILDER_CONFIGS = [
|
60 |
+
SEACrowdConfig(
|
61 |
+
name=f"{_DATASETNAME}_{lang}_source",
|
62 |
+
version=datasets.Version(_SOURCE_VERSION),
|
63 |
+
description=f"{_DATASETNAME} source schema for {lang} language",
|
64 |
+
schema="source",
|
65 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
66 |
+
)
|
67 |
+
for lang in _LANGUAGES
|
68 |
+
] + [
|
69 |
+
SEACrowdConfig(
|
70 |
+
name=f"{_DATASETNAME}_{lang}_seacrowd_t2t",
|
71 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
72 |
+
description=f"{_DATASETNAME} SEACrowd schema for {lang} language",
|
73 |
+
schema="seacrowd_t2t",
|
74 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
75 |
+
)
|
76 |
+
for lang in _LANGUAGES
|
77 |
+
]
|
78 |
+
|
79 |
+
# Config to load all datasets
|
80 |
+
BUILDER_CONFIGS.extend(
|
81 |
+
[
|
82 |
+
SEACrowdConfig(
|
83 |
+
name=f"{_DATASETNAME}_source",
|
84 |
+
version=datasets.Version(_SOURCE_VERSION),
|
85 |
+
description=f"{_DATASETNAME} source schema for all languages",
|
86 |
+
schema="source",
|
87 |
+
subset_id=_DATASETNAME,
|
88 |
+
),
|
89 |
+
SEACrowdConfig(
|
90 |
+
name=f"{_DATASETNAME}_seacrowd_t2t",
|
91 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
92 |
+
description=f"{_DATASETNAME} SEACrowd schema for all languages",
|
93 |
+
schema="seacrowd_t2t",
|
94 |
+
subset_id=_DATASETNAME,
|
95 |
+
),
|
96 |
+
]
|
97 |
+
)
|
98 |
+
|
99 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
100 |
+
|
101 |
+
def _info(self) -> datasets.DatasetInfo:
|
102 |
+
if self.config.schema == "source":
|
103 |
+
features = datasets.Features(
|
104 |
+
{
|
105 |
+
"id": datasets.Value("string"),
|
106 |
+
"url": datasets.Value("string"),
|
107 |
+
"title": datasets.Value("string"),
|
108 |
+
"summary": datasets.Value("string"),
|
109 |
+
"text": datasets.Value("string"),
|
110 |
+
}
|
111 |
+
)
|
112 |
+
elif self.config.schema == "seacrowd_t2t":
|
113 |
+
features = schemas.text2text_features
|
114 |
+
|
115 |
+
return datasets.DatasetInfo(
|
116 |
+
description=_DESCRIPTION,
|
117 |
+
features=features,
|
118 |
+
homepage=_HOMEPAGE,
|
119 |
+
license=_LICENSE,
|
120 |
+
citation=_CITATION,
|
121 |
+
)
|
122 |
+
|
123 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
124 |
+
"""Returns SplitGenerators."""
|
125 |
+
# dl_manager not used since dataloader uses HF 'load_dataset'
|
126 |
+
return [
|
127 |
+
datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name})
|
128 |
+
for split in (
|
129 |
+
datasets.Split.TRAIN,
|
130 |
+
datasets.Split.VALIDATION,
|
131 |
+
datasets.Split.TEST,
|
132 |
+
)
|
133 |
+
]
|
134 |
+
|
135 |
+
def _load_hf_data_from_remote(self, lang: str, split: str) -> datasets.DatasetDict:
|
136 |
+
"""Load dataset from HuggingFace."""
|
137 |
+
hf_remote_ref = "/".join(_URL.split("/")[-2:])
|
138 |
+
return datasets.load_dataset(hf_remote_ref, lang, split=split)
|
139 |
+
|
140 |
+
def _generate_examples(self, split: str) -> Tuple[int, Dict]:
|
141 |
+
"""Yields examples as (key, example) tuples."""
|
142 |
+
lr_sum_datasets = []
|
143 |
+
|
144 |
+
lang = self.config.subset_id.split("_")[-1]
|
145 |
+
if lang in _LANGUAGES:
|
146 |
+
lr_sum_datasets.append(self._load_hf_data_from_remote(lang, split))
|
147 |
+
else:
|
148 |
+
for lang in _LANGUAGES:
|
149 |
+
lr_sum_datasets.append(self._load_hf_data_from_remote(lang, split))
|
150 |
+
|
151 |
+
index = 0
|
152 |
+
for lang_subset in lr_sum_datasets:
|
153 |
+
for row in lang_subset:
|
154 |
+
if self.config.schema == "source":
|
155 |
+
example = row
|
156 |
+
|
157 |
+
elif self.config.schema == "seacrowd_t2t":
|
158 |
+
example = {
|
159 |
+
"id": str(index),
|
160 |
+
"text_1": row["text"],
|
161 |
+
"text_2": row["summary"],
|
162 |
+
"text_1_name": "document",
|
163 |
+
"text_2_name": "summary",
|
164 |
+
}
|
165 |
+
yield index, example
|
166 |
+
index += 1
|