Upload wongnai_reviews.py with huggingface_hub
Browse files- wongnai_reviews.py +116 -0
wongnai_reviews.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
11 |
+
|
12 |
+
# no BibTeX citation
|
13 |
+
_CITATION = ""
|
14 |
+
|
15 |
+
_DATASETNAME = "wongnai_reviews"
|
16 |
+
|
17 |
+
_DESCRIPTION = """
|
18 |
+
Wongnai features over 200,000 restaurants, beauty salons, and spas across Thailand on its platform, with detailed
|
19 |
+
information about each merchant and user reviews. Its over two million registered users can search for what’s top rated
|
20 |
+
in Bangkok, follow their friends, upload photos, and do quick write-ups about the places they visit. Each write-up
|
21 |
+
(review) also comes with a rating score ranging from 1-5 stars. The task here is to create a rating prediction model
|
22 |
+
using only textual information.
|
23 |
+
"""
|
24 |
+
|
25 |
+
_HOMEPAGE = "https://huggingface.co/datasets/wongnai_reviews"
|
26 |
+
|
27 |
+
_LANGUAGES = ["tha"]
|
28 |
+
|
29 |
+
_LICENSE = Licenses.LGPL_3_0.value
|
30 |
+
|
31 |
+
_LOCAL = False
|
32 |
+
|
33 |
+
_URLS = {_DATASETNAME: "https://archive.org/download/wongnai_reviews/wongnai_reviews_withtest.zip"}
|
34 |
+
|
35 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
36 |
+
|
37 |
+
_SOURCE_VERSION = "1.0.0"
|
38 |
+
|
39 |
+
_SEACROWD_VERSION = "2024.06.20"
|
40 |
+
|
41 |
+
_CLASSES = ["1", "2", "3", "4", "5"]
|
42 |
+
|
43 |
+
|
44 |
+
class WongnaiReviewsDataset(datasets.GeneratorBasedBuilder):
|
45 |
+
"""WongnaiReviews consists reviews for over 200,000 restaurants, beauty salons, and spas across Thailand."""
|
46 |
+
|
47 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
48 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
49 |
+
|
50 |
+
BUILDER_CONFIGS = [
|
51 |
+
SEACrowdConfig(
|
52 |
+
name=f"{_DATASETNAME}_source",
|
53 |
+
version=SOURCE_VERSION,
|
54 |
+
description=f"{_DATASETNAME} source schema",
|
55 |
+
schema="source",
|
56 |
+
subset_id=_DATASETNAME,
|
57 |
+
),
|
58 |
+
SEACrowdConfig(
|
59 |
+
name=f"{_DATASETNAME}_seacrowd_text",
|
60 |
+
version=SEACROWD_VERSION,
|
61 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
62 |
+
schema="seacrowd_text",
|
63 |
+
subset_id=_DATASETNAME,
|
64 |
+
),
|
65 |
+
]
|
66 |
+
|
67 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
68 |
+
|
69 |
+
def _info(self) -> datasets.DatasetInfo:
|
70 |
+
if self.config.schema == "source":
|
71 |
+
features = datasets.Features(
|
72 |
+
{
|
73 |
+
"review_body": datasets.Value("string"),
|
74 |
+
"star_rating": datasets.ClassLabel(names=_CLASSES),
|
75 |
+
}
|
76 |
+
)
|
77 |
+
|
78 |
+
elif self.config.schema == "seacrowd_text":
|
79 |
+
features = schemas.text_features(label_names=_CLASSES)
|
80 |
+
|
81 |
+
return datasets.DatasetInfo(
|
82 |
+
description=_DESCRIPTION,
|
83 |
+
features=features,
|
84 |
+
homepage=_HOMEPAGE,
|
85 |
+
license=_LICENSE,
|
86 |
+
citation=_CITATION,
|
87 |
+
)
|
88 |
+
|
89 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
90 |
+
"""Returns SplitGenerators."""
|
91 |
+
urls = _URLS[_DATASETNAME]
|
92 |
+
data_dir = dl_manager.download_and_extract(urls)
|
93 |
+
|
94 |
+
return [
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.TRAIN,
|
97 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "w_review_train.csv"), "split": "train"},
|
98 |
+
),
|
99 |
+
datasets.SplitGenerator(
|
100 |
+
name=datasets.Split.TEST,
|
101 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "w_review_test.csv"), "split": "test"},
|
102 |
+
),
|
103 |
+
]
|
104 |
+
|
105 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
106 |
+
if self.config.schema == "source":
|
107 |
+
with open(filepath, encoding="utf-8") as f:
|
108 |
+
spamreader = csv.reader(f, delimiter=";", quotechar='"')
|
109 |
+
for i, row in enumerate(spamreader):
|
110 |
+
yield i, {"review_body": row[0], "star_rating": row[1]}
|
111 |
+
|
112 |
+
elif self.config.schema == "seacrowd_text":
|
113 |
+
with open(filepath, encoding="utf-8") as f:
|
114 |
+
spamreader = csv.reader(f, delimiter=";", quotechar='"')
|
115 |
+
for i, row in enumerate(spamreader):
|
116 |
+
yield i, {"id": str(i), "text": row[0], "label": _CLASSES[int(row[1].strip()) - 1]}
|