Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
PierreAndreNoel commited on
Commit
c1c3729
·
verified ·
1 Parent(s): 19a45b2

Upload 2 files

Browse files
Files changed (2) hide show
  1. README-75m.md +38 -0
  2. get_bigdocs_75m.py +357 -57
README-75m.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BigDocs-7.5M
2
+ #### Training data for the paper: [BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks](https://huggingface.co/datasets/ServiceNow/BigDocs-Bench-Collections/)
3
+
4
+ 🌐 [Homepage](https://bigdocs.github.io) | 📖 [arXiv](https://arxiv.org/pdf/2412.04626)
5
+
6
+
7
+ ## Guide on Data Loading
8
+ Some parts of BigDocs-7.5M are distributed without their "image" column, and instead have an "img_id" column. The file `get_bigdocs_75m.py`, part of this repository, provides tooling to substitutes such images back in.
9
+
10
+ ```python
11
+ from get_bigdocs_75m import get_bigdocs_75m
12
+
13
+ arxivocr = get_bigdocs_75m("ArxivOCR")
14
+ arxivtablecap = get_bigdocs_75m("ArxivTableCap")
15
+ cocotext = get_bigdocs_75m("COCOtext", user_local_path=".../train2014")
16
+ pubtables1m = get_bigdocs_75m("pubtables-1m", user_local_path=".../PubTables-1M-Detection/images")
17
+ textocr = get_bigdocs_75m("TextOCR", user_local_path=".../train")
18
+ tabfact = get_bigdocs_75m("TabFact", user_local_path=".../Table-Fact-Checking")
19
+ open4business = get_bigdocs_75m("Open4Business", user_local_path=".../Open4Business")
20
+ wikitq = get_bigdocs_75m("WikiTQ", user_local_path=".../WikiTableQuestions")
21
+ ```
22
+
23
+ When specified, `user_local_path` must point to one of the third-party datasets listed below.
24
+
25
+ - COCOtext: http://images.cocodataset.org/zips/train2014.zip
26
+ - pubtables-1m: https://www.microsoft.com/en-us/research/publication/pubtables-1m
27
+ - TextOCR: https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
28
+ - TabFact: https://github.com/wenhuchen/Table-Fact-Checking
29
+ - Open4Business: https://github.com/amanpreet692/Open4Business
30
+ - WikiTQ: https://github.com/ppasupat/WikiTableQuestions
31
+
32
+ You may specify `num_proc` as you would for `datasets.map`. See the docstring in `get_bigdocs_75m.py` for more details.
33
+
34
+
35
+ ## Licensing
36
+ The part of this repository generated by us is Copyright ServiceNow 2024 and licensed under the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
37
+
38
+ Multiple datasets, documents, and tools were involved in the generation of BigDocs-Bench. We document these dependencies on a per-sample basis through the `query_info`, `annotation_info` and `image_info` fields, respectively documenting the `query`, `annotations` and `image` fields of our datasets.
get_bigdocs_75m.py CHANGED
@@ -1,13 +1,34 @@
 
1
  from typing import Optional
2
  import datasets
3
  import io
4
- import PIL
5
- import PIL.PngImagePlugin
6
  import os
 
7
  import hashlib
8
  import warnings
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
 
 
11
  ASSEMBLED_COLUMNS = (
12
  'sample_id',
13
  'dataset_name',
@@ -21,21 +42,319 @@ ASSEMBLED_COLUMNS = (
21
  'image_sha256'
22
  )
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- def _hash_bytes(b: bytes) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  m = hashlib.sha256()
27
  m.update(b)
28
  return m.hexdigest()
29
 
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  def get_bigdocs_75m(
32
- formal_name: datasets.DatasetDict,
33
- user_local_path: Optional[str],
34
- load_from_cache_file:Optional[bool]=None,
35
- num_proc: Optional[int]=None,
 
 
36
  raise_on_missing: Optional[bool]=None,
37
- skip_bad_sha256: Optional[bool]=None,
38
- bigdocs_load_dataset_kwargs: Optional[dict]=None
 
39
  ) -> datasets.DatasetDict:
40
  """
41
  Get a subset of BigDocs-7.5M
@@ -50,76 +369,57 @@ def get_bigdocs_75m(
50
  - COCOtext: http://images.cocodataset.org/zips/train2014.zip
51
  - pubtables-1m: https://www.microsoft.com/en-us/research/publication/pubtables-1m
52
  - TextOCR: https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
 
 
 
53
 
54
  Args:
55
- formal_name (`DatasetDict`): The BigDocs-7.5M dataset to augment with local images.
56
- user_local_path (`Optional[str]`, defaults to `None`): The local path containing the images to be linked.
57
- load_from_cache_file (`Optional[bool], defaults to `None`): Passed to `map`, `filter` and the likes.
58
- num_proc (`Optional[int], defaults to `None`): Passed to `map`, `filter` and the likes.
59
- raise_on_missing (`Optional[bool]`, defaults to `None`):
 
60
  Determines what to do when there is an error loading an image.
61
  - `True`: raise an error.
62
  - `None`: print a warning and skip the sample (default).
63
  - `False`: silently skip the sample.
64
- use_bad_sha256 (`Optional[bool], defaults to `None`):
65
  Determines what to do when the sha256 integrity test fails.
66
  - `True`: ignore the sha256 integrity test.
67
  - `None`: print a warning and skip samples with bad sha256 (default).
68
  - `False`: silently skip entries with bad sha256.
69
- load_dataset_kwargs (`Optional[dict]`, defaults to `None`): Arguments passed to datasets.load_dataset .
 
70
  """
71
- if bigdocs_load_dataset_kwargs is None:
72
- bigdocs_load_dataset_kwargs = {}
73
- unprocessed = datasets.load_dataset("ServiceNow/BigDocs-7.5M", formal_name, **bigdocs_load_dataset_kwargs)
74
-
75
- def on_disk_processor(sample):
76
- img_path = os.path.join(user_local_path, sample['img_id'])
77
- # Load the image
78
- try:
79
- image = PIL.Image.open(img_path)
80
- except Exception as e:
81
- if raise_on_missing:
82
- raise RuntimeError(f"Error loading image at {img_path}\n{e}")
83
- if raise_on_missing is None:
84
- warnings.warn(f"Skipping due to error loading image {img_path}", RuntimeWarning)
85
- image = None # Sample will be filtered out
86
- if image is not None:
87
- # Place into `buffer` using PNG image format
88
- buffer = io.BytesIO()
89
- image.save(buffer, "png")
90
- # Reload the image with guaranteed PNG format
91
- image = PIL.Image.open(buffer)
92
- # Check sha256
93
- if not skip_bad_sha256:
94
- sha256 = _hash_bytes(buffer.getvalue())
95
- if sha256 != sample["image_sha256"]:
96
- image = None # Sample will be filtered out
97
- if skip_bad_sha256 is None:
98
- warnings.warn(f"Skipping due to bad sha256 for {img_path}", RuntimeWarning)
99
- return {"image": image}
100
-
101
  # Get the correct processor
102
  try:
103
- processor = {
104
- "COCOtext": on_disk_processor,
105
- "pubtables-1m": on_disk_processor,
106
- "TextOCR": on_disk_processor,
107
- }[formal_name]
108
  except KeyError:
109
  raise ValueError(f"Unknown formal_name: {formal_name}")
110
- if processor is on_disk_processor:
111
- assert user_local_path is not None, f"user_local_path is mandatory for formal_name={formal_name}"
112
-
113
- if processor is None:
114
  processed = unprocessed
115
  else:
 
116
  processed = unprocessed.map(
117
  processor,
118
  remove_columns="img_id",
119
  load_from_cache_file=load_from_cache_file,
120
- num_proc=num_proc
 
121
  )
122
- # Drop missing images.
123
  if not raise_on_missing:
124
  processed = processed.filter((lambda image: image is not None), input_columns="image", num_proc=num_proc)
125
  # Column order
 
1
+ import abc
2
  from typing import Optional
3
  import datasets
4
  import io
 
 
5
  import os
6
+ import json
7
  import hashlib
8
  import warnings
9
+ import csv
10
+ import textwrap
11
+
12
+ # Tested with pandas=2.2.2
13
+ import pandas as pd
14
+
15
+ # Tested with pillow==10.4.0
16
+ import PIL
17
+ import PIL.Image
18
+ import PIL.PngImagePlugin
19
+
20
+ # Tested with PyMuPDF==1.24.7 PyMuPDFb==1.24.6
21
+ import pymupdf
22
+
23
+ # Tested with reportlab==4.2.2
24
+ import reportlab
25
+ import reportlab.lib.colors
26
+ import reportlab.lib.pagesizes
27
+ import reportlab.platypus
28
+ import reportlab.pdfgen
29
 
30
 
31
+ # Once properly assembled, the datasets should have these columns
32
  ASSEMBLED_COLUMNS = (
33
  'sample_id',
34
  'dataset_name',
 
42
  'image_sha256'
43
  )
44
 
45
+ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
46
+ # Now scroll down to the very bottom for `get_bigdocs_75m`! #
47
+ # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
48
+
49
+
50
+ def pdf_to_image(pdf_stream, crop: bool=False) -> PIL.PngImagePlugin.PngImageFile:
51
+ doc = pymupdf.open(stream=pdf_stream)
52
+ # Render each page to an image in a list of images
53
+ images = [
54
+ PIL.Image.open(io.BytesIO(page.get_pixmap(dpi=144).tobytes("png")))
55
+ for page in doc
56
+ ]
57
+ # Crop the footer if crop is True
58
+ if crop:
59
+ for i in range(len(images)):
60
+ images[i] = images[i].crop(
61
+ (120, 120, images[i].width - 120, images[i].height - 140)
62
+ )
63
+ # Determine the total width and height of the combined image
64
+ total_width = max(im.width for im in images)
65
+ total_height = sum(im.height for im in images)
66
+ # Create a new image with the combined size
67
+ combined_image = PIL.Image.new("RGB", (total_width, total_height), "white")
68
+ # Paste each page image into the combined image
69
+ y_offset = 0
70
+ for im in images:
71
+ combined_image.paste(im, (0, y_offset))
72
+ y_offset += im.height
73
+ # At this point combined_image is what we want, but under the wrong Python type
74
+ # Place into buffer using PNG image format
75
+ buffer = io.BytesIO()
76
+ combined_image.save(buffer, "png")
77
+ # Reload as PIL.PngImagePlugin.PngImageFile
78
+ return PIL.Image.open(buffer)
79
+
80
+
81
+ WHITE = reportlab.lib.colors.white
82
+ BLACK = reportlab.lib.colors.black
83
+ TABLE_STYLE = reportlab.platypus.TableStyle([
84
+ ("BACKGROUND", (0, 0), (-1, 0), WHITE),
85
+ ("TEXTCOLOR", (0, 0), (-1, 0), BLACK),
86
+ ("ALIGN", (0, 0), (-1, -1), "CENTER"),
87
+ ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"),
88
+ ("BOTTOMPADDING", (0, 0), (-1, 0), 12),
89
+ ("BACKGROUND", (0, 1), (-1, -1), WHITE),
90
+ ("GRID", (0, 0), (-1, -1), 1, BLACK),
91
+ ])
92
+
93
+
94
+ def csv_to_image(csv_path: str) -> PIL.PngImagePlugin.PngImageFile:
95
+ # Load the data
96
+ with open(csv_path, newline="") as csv_stream:
97
+ reader = csv.reader(csv_stream, delimiter="#")
98
+ data = [row for row in reader]
99
+ # Create a table with CSV data
100
+ table = reportlab.platypus.Table(data)
101
+ table.setStyle(TABLE_STYLE)
102
+ # Virtual PDF file
103
+ pdf_stream = io.BytesIO()
104
+ # Build a document from the table
105
+ reportlab.platypus.SimpleDocTemplate(pdf_stream, pagesize=reportlab.lib.pagesizes.letter).build([table])
106
+
107
+ return pdf_to_image(pdf_stream)
108
+
109
+
110
+ def text_to_image(text: str, font_size: int = 10) -> PIL.PngImagePlugin.PngImageFile:
111
+ pdf_stream = io.BytesIO()
112
+ c = reportlab.pdfgen.canvas.Canvas(
113
+ pdf_stream,
114
+ pagesize=reportlab.lib.pagesizes.letter
115
+ )
116
+ c.setFont("Helvetica", font_size)
117
+
118
+ # Wrap the text for better handling in PDF
119
+ wrapped_text = textwrap.wrap(text, width=100)
120
+
121
+ # Starting position on the page
122
+ x_position = 72 # 1 inch from the left margin
123
+ y_position = 11 * 72 - 72 # Start 1 inch from the top of an 11-inch page
124
+
125
+ text_height = font_size * 1.2 # Approximate line height
126
 
127
+ for line in wrapped_text:
128
+ if y_position < 72: # Check if we're near the bottom of the page
129
+ c.showPage()
130
+ c.setFont("Helvetica", font_size)
131
+ y_position = 11 * 72 - 72 # Reset position to top of new page
132
+
133
+ c.drawString(x_position, y_position, line)
134
+ y_position -= text_height # Move down for next line
135
+
136
+ c.save()
137
+
138
+ return pdf_to_image(pdf_stream, crop=True)
139
+
140
+
141
+ def csv_to_markdown(csv_path: str, sep: str) -> str:
142
+ # Format with pandas, but ensure there are no consecutive spaces
143
+ df = pd.read_csv(csv_path, sep=sep)
144
+ return " ".join(df.to_markdown(index=False).split())
145
+
146
+
147
+ def get_sha256(
148
+ image: PIL.PngImagePlugin.PngImageFile,
149
+ b: Optional[bytes]=None
150
+ ) -> str:
151
+ # Ignore image if bytes representation b is already provided
152
+ if b is None:
153
+ buffer = io.BytesIO()
154
+ image.save(buffer, "png")
155
+ b = buffer.getvalue()
156
  m = hashlib.sha256()
157
  m.update(b)
158
  return m.hexdigest()
159
 
160
 
161
+ class Assembler(abc.ABC):
162
+ def __init__(
163
+ self,
164
+ user_local_path: Optional[str],
165
+ raise_on_missing: Optional[bool],
166
+ use_bad_sha256: Optional[bool]
167
+ ):
168
+ self.user_local_path = user_local_path
169
+ self.raise_on_missing = raise_on_missing
170
+ self.use_bad_sha256 = use_bad_sha256
171
+
172
+ @abc.abstractmethod
173
+ def __call__(self, sample) -> dict:
174
+ """Processor called by `map` on each sample"""
175
+
176
+ def keep_image(
177
+ self,
178
+ image: Optional[PIL.PngImagePlugin.PngImageFile],
179
+ expected_sha256: str,
180
+ b: Optional[bytes]=None
181
+ ) -> bool:
182
+ if image is None:
183
+ # No image to check
184
+ return False
185
+ if self.use_bad_sha256:
186
+ # We're going to use the image whether or not the sha256 is good
187
+ return True
188
+ sha256 = get_sha256(image, b)
189
+ if sha256 != expected_sha256:
190
+ # Give warning if didn't explicitly set use_bad_sha256 to False
191
+ if self.use_bad_sha256 is None:
192
+ warnings.warn(f"Skipping due to bad sha256", RuntimeWarning)
193
+ # Sample will be filtered out
194
+ return False
195
+ else:
196
+ # Sample will be used
197
+ return True
198
+
199
+
200
+ class AssembleFromDisk(Assembler):
201
+ def __init__(self, *args, **kwargs):
202
+ super().__init__(*args, **kwargs)
203
+ assert self.user_local_path is not None, f"user_local_path is mandatory for this dataset"
204
+
205
+ def __call__(self, sample) -> dict:
206
+ img_path = os.path.join(self.user_local_path, sample['img_id'])
207
+ # Load the image
208
+ try:
209
+ image = PIL.Image.open(img_path)
210
+ except Exception as e:
211
+ if self.raise_on_missing:
212
+ raise RuntimeError(f"Error loading image at {img_path}\n{e}")
213
+ if self.raise_on_missing is None:
214
+ warnings.warn(f"Skipping due to error loading image {img_path}\n{e}", RuntimeWarning)
215
+ image = None # Sample will be filtered out
216
+ if image is not None:
217
+ # Place into `buffer` using PNG image format
218
+ buffer = io.BytesIO()
219
+ image.save(buffer, "png")
220
+ # Reload the image with guaranteed PNG format
221
+ image = PIL.Image.open(buffer)
222
+ # Check sha256
223
+ if not self.keep_image(image, sample["image_sha256"], b=buffer.getvalue()):
224
+ image = None
225
+ return {"image": image}
226
+
227
+
228
+ class AssembleTabFact(Assembler):
229
+ def __init__(self, *args, **kwargs):
230
+ super().__init__(*args, **kwargs)
231
+ # Get annotations
232
+ json_path = os.path.join(self.user_local_path, "tokenized_data/total_examples.json")
233
+ with open(json_path, "rt") as fp:
234
+ self.tables_data = json.load(fp)
235
+
236
+ def __call__(self, sample) -> dict:
237
+ csv_path = os.path.join(self.user_local_path, "data/all_csv", sample["img_id"])
238
+ image = csv_to_image(csv_path)
239
+ # Check sha256
240
+ if not self.keep_image(image, sample["image_sha256"]):
241
+ # Skip both image and annotations (will be filtered out)
242
+ return {"image": None, "annotations": [""]}
243
+ # Annotations
244
+ if sample["task_name"] == "table_parsing2md":
245
+ annotations = [csv_to_markdown(csv_path, sep="#")]
246
+ else:
247
+ facts, entails, title = self.tables_data[sample["img_id"]]
248
+ if sample["task_name"] == "caption":
249
+ # The "caption" is the table's title
250
+ annotations = [title]
251
+ else:
252
+ assert sample["task_name"] == "summary"
253
+ # select only entries in facts with entailment label as 1
254
+ facts = [fact for fact, entailment in zip(facts, entails) if entailment == 1]
255
+ # concat facts with numbered bullets and new lines
256
+ annotations = ["\n".join([f"{i+1}. {fact}" for i, fact in enumerate(facts)])]
257
+ return {"image": image, "annotations": annotations}
258
+
259
+
260
+ class AssembleOpen4Business(Assembler):
261
+ def __init__(self, *args, **kwargs):
262
+ super().__init__(*args, **kwargs)
263
+ # Get annotations
264
+ self.texts, self.summaries = {}, {}
265
+ for split in ["train", "val", "test"]:
266
+ with open(os.path.join(self.user_local_path, f"{split}.source"), "rt") as fp:
267
+ # Don't strip here because that may alter the image sha256
268
+ self.texts[split] = list(line for line in fp)
269
+ with open(os.path.join(self.user_local_path, f"{split}.target"), "rt") as fp:
270
+ self.summaries[split] = list(line.strip() for line in fp)
271
+
272
+ def __call__(self, sample) -> dict:
273
+ split, line_number = sample["img_id"].split("_")
274
+ line_number = int(line_number)
275
+ print(split, line_number, sample["task_name"])
276
+ try:
277
+ text = self.texts[split][line_number]
278
+ image = text_to_image(text)
279
+ # Check sha256
280
+ if not self.keep_image(image, sample["image_sha256"]):
281
+ # Skip both image and annotations (will be filtered out)
282
+ return {"image": None, "annotations": [""]}
283
+ # Annotations
284
+ if sample["task_name"] == "extraction":
285
+ # Don't forget the strip!
286
+ annotations = [text.strip()]
287
+ else:
288
+ assert sample["task_name"] == "summary"
289
+ annotations = [self.summaries[split][line_number]]
290
+ except Exception as e:
291
+ print(f"EXCEPTION on {split}, {line_number}, {sample['task_name']}. Original error: {e.__str__}")
292
+ raise e
293
+ return {"image": image, "annotations": annotations}
294
+
295
+
296
+ class AssembleWikiTQ(Assembler):
297
+ def __init__(self, *args, **kwargs):
298
+ super().__init__(*args, **kwargs)
299
+ # Get annotations
300
+ self.annotations = pd.concat([
301
+ pd.read_csv(
302
+ os.path.join(self.user_local_path, "data", tsv_file),
303
+ sep="\t", on_bad_lines="skip", index_col="id"
304
+ ) for tsv_file in {
305
+ "training.tsv",
306
+ "pristine-seen-tables.tsv",
307
+ "pristine-unseen-tables.tsv"
308
+ }
309
+ ])
310
+
311
+ def __call__(self, sample) -> dict:
312
+ question, context, answer = self.annotations.loc[sample["img_id"]]
313
+ csv_path = os.path.join(self.user_local_path, context)
314
+ image = csv_to_image(csv_path)
315
+ # Check sha256
316
+ if not self.keep_image(image, sample["image_sha256"]):
317
+ # Skip both image and annotations (will be filtered out)
318
+ return {"image": None, "annotations": [""]}
319
+ # Annotations
320
+ if sample["task_name"] == "table_parsing2md":
321
+ annotations = [csv_to_markdown(csv_path, sep=",")]
322
+ return {"image": image, "annotations": annotations}
323
+ else:
324
+ assert sample["task_name"] == "qa"
325
+ query = [sample["query"][0].format(question=question)]
326
+ answers = str(answer).split("|")
327
+ answer = " or ".join(answers) if len(answers) > 1 else answers[0]
328
+ annotations = [sample["annotations"][0].format(answer=answer)]
329
+ return {"image": image, "query": query, "annotations": annotations}
330
+
331
+
332
+ KNOWN_ASSEMBLERS = {
333
+ "ArxivOCR": None,
334
+ "ArxivTableCap": None,
335
+ "COCOtext": AssembleFromDisk,
336
+ "pubtables-1m": AssembleFromDisk,
337
+ "TextOCR": AssembleFromDisk,
338
+ "TabFact": AssembleTabFact,
339
+ "Open4Business": AssembleOpen4Business,
340
+ "WikiTQ": AssembleWikiTQ,
341
+ }
342
+
343
+
344
+ # # # # # # # # # # # # # # # # # # # # # # #
345
+ # This is the function you are looking for! #
346
+ # # # # # # # # # # # # # # # # # # # # # # #
347
  def get_bigdocs_75m(
348
+ formal_name: str,
349
+ user_local_path: Optional[str]=None,
350
+ *,
351
+ load_from_cache_file: Optional[bool]=None,
352
+ num_proc: Optional[int]=4,
353
+ writer_batch_size: int=100,
354
  raise_on_missing: Optional[bool]=None,
355
+ use_bad_sha256: Optional[bool]=None,
356
+ bigdocs_load_dataset_kwargs: Optional[dict]=None,
357
+ unprocessed: Optional[datasets.DatasetDict]=None
358
  ) -> datasets.DatasetDict:
359
  """
360
  Get a subset of BigDocs-7.5M
 
369
  - COCOtext: http://images.cocodataset.org/zips/train2014.zip
370
  - pubtables-1m: https://www.microsoft.com/en-us/research/publication/pubtables-1m
371
  - TextOCR: https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
372
+ - TabFact: https://github.com/wenhuchen/Table-Fact-Checking
373
+ - Open4Business: https://github.com/amanpreet692/Open4Business
374
+ - WikiTQ: https://github.com/ppasupat/WikiTableQuestions
375
 
376
  Args:
377
+ formal_name (`str`): The desired subset of BigDocs-7.5M .
378
+ user_local_path (`Optional[str]`): The local path containing the images to be linked.
379
+ load_from_cache_file (`Optional[bool]): Passed to `map`, `filter` and the likes.
380
+ num_proc (`Optional[int]): Passed to `map`, `filter` and the likes.
381
+ writer_batch_size (`int`, defaults to 100): Passed to `map`. Too large values may cause OOM.
382
+ raise_on_missing (`Optional[bool]`):
383
  Determines what to do when there is an error loading an image.
384
  - `True`: raise an error.
385
  - `None`: print a warning and skip the sample (default).
386
  - `False`: silently skip the sample.
387
+ use_bad_sha256 (`Optional[bool]):
388
  Determines what to do when the sha256 integrity test fails.
389
  - `True`: ignore the sha256 integrity test.
390
  - `None`: print a warning and skip samples with bad sha256 (default).
391
  - `False`: silently skip entries with bad sha256.
392
+ bigdocs_load_dataset_kwargs (`Optional[dict]`): Arguments passed to datasets.load_dataset when retrieving ServiceNow/BigDocs-7.5M .
393
+ unprocessed (Optional[datasets.DatasetDict]): If provided, will be used in stead of ServiceNow/BigDocs-7.5M .
394
  """
395
+ # Get the unprocessed ServiceNow/BigDocs-7.5M
396
+ if unprocessed is None:
397
+ if bigdocs_load_dataset_kwargs is None:
398
+ bigdocs_load_dataset_kwargs = {}
399
+ unprocessed = datasets.load_dataset(
400
+ "ServiceNow/BigDocs-7.5M",
401
+ formal_name,
402
+ **bigdocs_load_dataset_kwargs
403
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404
  # Get the correct processor
405
  try:
406
+ assembler = KNOWN_ASSEMBLERS[formal_name]
 
 
 
 
407
  except KeyError:
408
  raise ValueError(f"Unknown formal_name: {formal_name}")
409
+ # Do the processing
410
+ if assembler is None:
411
+ assert user_local_path is None
 
412
  processed = unprocessed
413
  else:
414
+ processor = assembler(user_local_path, raise_on_missing, use_bad_sha256)
415
  processed = unprocessed.map(
416
  processor,
417
  remove_columns="img_id",
418
  load_from_cache_file=load_from_cache_file,
419
+ num_proc=num_proc,
420
+ writer_batch_size=writer_batch_size
421
  )
422
+ # Drop missing images (we can skip if we raised on missing images).
423
  if not raise_on_missing:
424
  processed = processed.filter((lambda image: image is not None), input_columns="image", num_proc=num_proc)
425
  # Column order