Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
jiminHuang commited on
Commit
e207a94
·
verified ·
1 Parent(s): 19bcfb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +169 -2
README.md CHANGED
@@ -19,7 +19,174 @@ dataset_info:
19
  num_examples: 496
20
  download_size: 140144
21
  dataset_size: 384180
 
 
 
 
 
 
 
 
 
 
22
  ---
23
- # Dataset Card for "flare-fomc"
24
 
25
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  num_examples: 496
20
  download_size: 140144
21
  dataset_size: 384180
22
+ license: cc-by-nc-4.0
23
+ task_categories:
24
+ - text-classification
25
+ language:
26
+ - en
27
+ tags:
28
+ - finance
29
+ pretty_name: FinBen FOMC
30
+ size_categories:
31
+ - n<1K
32
  ---
 
33
 
34
+ ---
35
+
36
+ # Dataset Card for FinBen-FOMC
37
+
38
+ ## Table of Contents
39
+
40
+ - [Table of Contents](#table-of-contents)
41
+ - [Dataset Description](#dataset-description)
42
+ - [Dataset Summary](#dataset-summary)
43
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
44
+ - [Languages](#languages)
45
+ - [Dataset Structure](#dataset-structure)
46
+ - [Data Instances](#data-instances)
47
+ - [Data Fields](#data-fields)
48
+ - [Data Splits](#data-splits)
49
+ - [Dataset Creation](#dataset-creation)
50
+ - [Curation Rationale](#curation-rationale)
51
+ - [Source Data](#source-data)
52
+ - [Annotations](#annotations)
53
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
54
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
55
+ - [Social Impact of Dataset](#social-impact-of-dataset)
56
+ - [Discussion of Biases](#discussion-of-biases)
57
+ - [Other Known Limitations](#other-known-limitations)
58
+ - [Additional Information](#additional-information)
59
+ - [Dataset Curators](#dataset-curators)
60
+ - [Licensing Information](#licensing-information)
61
+ - [Citation Information](#citation-information)
62
+ - [Contributions](#contributions)
63
+
64
+ ## Dataset Description
65
+
66
+ - **Homepage:** https://huggingface.co/datasets/TheFinAI/finben-fomc
67
+ - **Repository:** https://huggingface.co/datasets/TheFinAI/finben-fomc
68
+ - **Paper:** FinBen: An Holistic Financial Benchmark for Large Language Models
69
+ - **Leaderboard:** https://huggingface.co/spaces/finosfoundation/Open-Financial-LLM-Leaderboard
70
+
71
+ ### Dataset Summary
72
+
73
+ FinBen-FOMC is a financial sentiment classification dataset adapted from **FOMC (Shah et al., 2023a)**. The dataset is designed for training and evaluating large language models (LLMs) on classifying central bank policy stances as **Hawkish, Dovish, or Neutral**.
74
+
75
+ ### Supported Tasks and Leaderboards
76
+
77
+ - **Task:** Hawkish-Dovish Classification
78
+ - **Evaluation Metric:** F1 Score, Accuracy
79
+ - **Test Size:** 496 instances
80
+
81
+ ### Languages
82
+
83
+ - English
84
+
85
+ ## Dataset Structure
86
+
87
+ ### Data Instances
88
+
89
+ Each instance consists of a structured format with the following fields:
90
+
91
+ - **id**: A unique identifier for each data instance.
92
+ - **query**: An excerpt from a central bank’s release.
93
+ - **answer**: The classification label (`HAWKISH`, `DOVISH`, or `NEUTRAL`).
94
+
95
+ ### Data Fields
96
+
97
+ - **id**: Unique string identifier for the data instance.
98
+ - **query**: The input text containing an excerpt from a central bank statement.
99
+ - **answer**: The classification label (`HAWKISH`, `DOVISH`, or `NEUTRAL`).
100
+
101
+ ### Data Splits
102
+
103
+ The dataset is split into:
104
+
105
+ - **Test:** 496 instances
106
+
107
+ ## Dataset Creation
108
+
109
+ ### Curation Rationale
110
+
111
+ The dataset is adapted from **FOMC (Shah et al., 2023a)** to improve its suitability for LLM-based classification tasks in central bank policy analysis.
112
+
113
+ ### Source Data
114
+
115
+ #### Initial Data Collection and Normalization
116
+
117
+ The dataset originates from Federal Open Market Committee (FOMC) statements and other central bank releases.
118
+
119
+ #### Who are the source language producers?
120
+
121
+ Central bank officials and policy documents.
122
+
123
+ ### Annotations
124
+
125
+ #### Annotation Process
126
+
127
+ Annotations follow a structured classification framework to label monetary policy stances.
128
+
129
+ #### Who are the annotators?
130
+
131
+ Financial experts and researchers.
132
+
133
+ ### Personal and Sensitive Information
134
+
135
+ No personally identifiable information (PII) is included.
136
+
137
+ ## Considerations for Using the Data
138
+
139
+ ### Social Impact of Dataset
140
+
141
+ This dataset enhances financial NLP capabilities, allowing more accurate analysis of monetary policy signals.
142
+
143
+ ### Discussion of Biases
144
+
145
+ Potential biases may exist due to:
146
+
147
+ - Interpretation differences in policy statements.
148
+ - Variability in central bank language across periods.
149
+
150
+ ### Other Known Limitations
151
+
152
+ - Requires financial domain expertise for best model performance.
153
+ - May not generalize well to non-FOMC policy documents.
154
+
155
+ ## Additional Information
156
+
157
+ ### Dataset Curators
158
+
159
+ - The Fin AI Team
160
+
161
+ ### Licensing Information
162
+
163
+ - **License:** CC BY-NC 4.0
164
+
165
+ ### Citation Information
166
+
167
+ **Original Dataset:**
168
+
169
+ ```bibtex
170
+ @inproceedings{shah2023trillion,
171
+ title={Trillion Dollar Words: A New Financial Dataset, Task & Market Analysis},
172
+ author={Shah, Agam and Paturi, Suvan and Chava, Sudheer},
173
+ booktitle={Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
174
+ editor={Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki},
175
+ pages={6664--6679},
176
+ year={2023},
177
+ organization={Association for Computational Linguistics},
178
+ address={Toronto, Canada},
179
+ doi={10.18653/v1/2023.acl-long.368}
180
+ }
181
+ ```
182
+
183
+ **Adapted Version (FinBen-FOMC):**
184
+
185
+ ```bibtex
186
+ @article{xie2024finben,
187
+ title={FinBen: A Holistic Financial Benchmark for Large Language Models},
188
+ author={Xie, Qianqian and others},
189
+ journal={arXiv preprint arXiv:2402.12659},
190
+ year={2024}
191
+ }
192
+ ```