Datasets:
fix: image loading
Browse files- README.md +3 -3
- facial_keypoint_detection.py +47 -28
README.md
CHANGED
|
@@ -19,10 +19,10 @@ dataset_info:
|
|
| 19 |
dtype: string
|
| 20 |
splits:
|
| 21 |
- name: train
|
| 22 |
-
num_bytes:
|
| 23 |
num_examples: 15
|
| 24 |
-
download_size:
|
| 25 |
-
dataset_size:
|
| 26 |
---
|
| 27 |
# Facial Keypoints
|
| 28 |
The dataset is designed for computer vision and machine learning tasks involving the identification and analysis of key points on a human face. It consists of images of human faces, each accompanied by key point annotations in XML format.
|
|
|
|
| 19 |
dtype: string
|
| 20 |
splits:
|
| 21 |
- name: train
|
| 22 |
+
num_bytes: 134736982
|
| 23 |
num_examples: 15
|
| 24 |
+
download_size: 129724970
|
| 25 |
+
dataset_size: 134736982
|
| 26 |
---
|
| 27 |
# Facial Keypoints
|
| 28 |
The dataset is designed for computer vision and machine learning tasks involving the identification and analysis of key points on a human face. It consists of images of human faces, each accompanied by key point annotations in XML format.
|
facial_keypoint_detection.py
CHANGED
|
@@ -103,11 +103,15 @@ class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
|
|
| 103 |
license=_LICENSE)
|
| 104 |
|
| 105 |
def _split_generators(self, dl_manager):
|
| 106 |
-
images = dl_manager.download_and_extract(f"{_DATA}images.zip")
|
| 107 |
-
masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")
|
|
|
|
|
|
|
| 108 |
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
| 109 |
-
images = dl_manager.iter_files(images)
|
| 110 |
-
masks = dl_manager.iter_files(masks)
|
|
|
|
|
|
|
| 111 |
|
| 112 |
return [
|
| 113 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
|
@@ -120,29 +124,44 @@ class FacialKeypointDetection(datasets.GeneratorBasedBuilder):
|
|
| 120 |
|
| 121 |
def _generate_examples(self, images, masks, annotations):
|
| 122 |
annotations_df = pd.read_csv(annotations, sep=',')
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
for idx, (image_path, mask_path) in enumerate(zip(images, masks)):
|
| 126 |
-
images_data.loc[idx] = {
|
| 127 |
-
'image_name': image_path.split('/')[-1],
|
| 128 |
-
'image_path': image_path,
|
| 129 |
-
'mask_path': mask_path
|
| 130 |
-
}
|
| 131 |
-
|
| 132 |
-
annotations_df = pd.merge(annotations_df,
|
| 133 |
-
images_data,
|
| 134 |
-
how='left',
|
| 135 |
-
on=['image_name'])
|
| 136 |
-
|
| 137 |
-
annotations_df[['image_path', 'mask_path'
|
| 138 |
-
]] = annotations_df[['image_path',
|
| 139 |
-
'mask_path']].astype('string')
|
| 140 |
-
|
| 141 |
-
for row in annotations_df.sort_values(['image_name'
|
| 142 |
-
]).itertuples(index=False):
|
| 143 |
yield idx, {
|
| 144 |
-
'image_id':
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
license=_LICENSE)
|
| 104 |
|
| 105 |
def _split_generators(self, dl_manager):
|
| 106 |
+
# images = dl_manager.download_and_extract(f"{_DATA}images.zip")
|
| 107 |
+
# masks = dl_manager.download_and_extract(f"{_DATA}masks.zip")
|
| 108 |
+
images = dl_manager.download(f"{_DATA}images.tar.gz")
|
| 109 |
+
masks = dl_manager.download(f"{_DATA}masks.tar.gz")
|
| 110 |
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
|
| 111 |
+
# images = dl_manager.iter_files(images)
|
| 112 |
+
# masks = dl_manager.iter_files(masks)
|
| 113 |
+
images = dl_manager.iter_archive(images)
|
| 114 |
+
masks = dl_manager.iter_archive(masks)
|
| 115 |
|
| 116 |
return [
|
| 117 |
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
|
|
|
| 124 |
|
| 125 |
def _generate_examples(self, images, masks, annotations):
|
| 126 |
annotations_df = pd.read_csv(annotations, sep=',')
|
| 127 |
+
for idx, ((image_path, image),
|
| 128 |
+
(mask_path, mask)) in enumerate(zip(images, masks)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
yield idx, {
|
| 130 |
+
'image_id': annotations_df['image_id'].iloc[idx],
|
| 131 |
+
"image": {
|
| 132 |
+
"path": image_path,
|
| 133 |
+
"bytes": image.read()
|
| 134 |
+
},
|
| 135 |
+
"mask": {
|
| 136 |
+
"path": mask_path,
|
| 137 |
+
"bytes": mask.read()
|
| 138 |
+
},
|
| 139 |
+
'key_points': annotations_df['key_points'].iloc[idx]
|
| 140 |
}
|
| 141 |
+
# images_data = pd.DataFrame(
|
| 142 |
+
# columns=['image_name', 'image_path', 'mask_path'])
|
| 143 |
+
# for idx, ((image_path, image),
|
| 144 |
+
# (mask_path, mask)) in enumerate(zip(images, masks)):
|
| 145 |
+
# images_data.loc[idx] = {
|
| 146 |
+
# 'image_name': image_path.split('/')[-1],
|
| 147 |
+
# 'image_path': image_path,
|
| 148 |
+
# 'mask_path': mask_path
|
| 149 |
+
# }
|
| 150 |
+
|
| 151 |
+
# annotations_df = pd.merge(annotations_df,
|
| 152 |
+
# images_data,
|
| 153 |
+
# how='left',
|
| 154 |
+
# on=['image_name'])
|
| 155 |
+
|
| 156 |
+
# annotations_df[['image_path', 'mask_path'
|
| 157 |
+
# ]] = annotations_df[['image_path',
|
| 158 |
+
# 'mask_path']].astype('string')
|
| 159 |
+
|
| 160 |
+
# for row in annotations_df.sort_values(['image_name'
|
| 161 |
+
# ]).itertuples(index=False):
|
| 162 |
+
# yield idx, {
|
| 163 |
+
# 'image_id': row[0],
|
| 164 |
+
# 'image': row[3],
|
| 165 |
+
# 'mask': row[4],
|
| 166 |
+
# 'key_points': row[2]
|
| 167 |
+
# }
|