|  | import datasets | 
					
						
						|  | import pandas as pd | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @InProceedings{huggingface:dataset, | 
					
						
						|  | title = {helmet_detection}, | 
					
						
						|  | author = {TrainingDataPro}, | 
					
						
						|  | year = {2023} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | An example of a dataset that we've collected for a photo edit App. | 
					
						
						|  | The dataset includes 20 selfies of people (man and women) | 
					
						
						|  | in segmentation masks and their visualisations. | 
					
						
						|  | """ | 
					
						
						|  | _NAME = 'helmet_detection' | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "" | 
					
						
						|  |  | 
					
						
						|  | _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FaceSegmentation(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """Small sample of image-text pairs""" | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features({ | 
					
						
						|  | 'id': datasets.Value('int32'), | 
					
						
						|  | 'image': datasets.Image(), | 
					
						
						|  | 'mask': datasets.Image(), | 
					
						
						|  | 'bboxes': datasets.Value('string') | 
					
						
						|  | }), | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | images = dl_manager.download(f"{_DATA}images.tar.gz") | 
					
						
						|  | masks = dl_manager.download(f"{_DATA}masks.tar.gz") | 
					
						
						|  | annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") | 
					
						
						|  | images = dl_manager.iter_archive(images) | 
					
						
						|  | masks = dl_manager.iter_archive(masks) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator(name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "images": images, | 
					
						
						|  | 'masks': masks, | 
					
						
						|  | 'annotations': annotations | 
					
						
						|  | }), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, images, masks, annotations): | 
					
						
						|  | annotations_df = pd.read_csv(annotations) | 
					
						
						|  |  | 
					
						
						|  | for idx, ((image_path, image), | 
					
						
						|  | (mask_path, mask)) in enumerate(zip(images, masks)): | 
					
						
						|  | yield idx, { | 
					
						
						|  | 'id': annotations_df['image_id'].iloc[idx], | 
					
						
						|  | "image": { | 
					
						
						|  | "path": image_path, | 
					
						
						|  | "bytes": image.read() | 
					
						
						|  | }, | 
					
						
						|  | "mask": { | 
					
						
						|  | "path": mask_path, | 
					
						
						|  | "bytes": mask.read() | 
					
						
						|  | }, | 
					
						
						|  | 'bboxes': annotations_df['bboxes'].iloc[idx] | 
					
						
						|  | } | 
					
						
						|  |  |