File size: 16,469 Bytes
674c6f2 5c9419e 82e33f5 42da7f1 ce6d313 d46900e 7ddb05b ce6d313 7a13da1 7ddb05b ce6d313 7ddb05b ce6d313 42da7f1 7ddb05b ce6d313 90e7212 7ddb05b ce6d313 7ddb05b 85407e3 7ddb05b 85407e3 b5ec9d8 7ddb05b b5ec9d8 7ddb05b 3a4f976 fdd0b64 7ddb05b fdd0b64 fde4a59 7ddb05b fde4a59 7ddb05b 8e1d0f4 8b517dd 7ddb05b 8b517dd 157cb17 7ddb05b 157cb17 7ddb05b 42da7f1 90e7212 ce6d313 85407e3 b5ec9d8 3a4f976 fdd0b64 8e1d0f4 d691f89 7ddb05b 674c6f2 82e33f5 3eec0bf 82e33f5 1ec086b e831b3a 8c6662d e831b3a 037cce0 1ec086b 6ad3683 1ec086b e831b3a 8c6662d ab25a51 e831b3a 6ad3683 037cce0 6ad3683 ab25a51 1ec086b 6ad3683 1ec086b e831b3a 8c6662d e831b3a 6ad3683 1ec086b 6ad3683 1ec086b 9473143 c56be29 1ec086b 8e04777 1ec086b 8e04777 1ec086b 8e04777 037cce0 8e04777 c56be29 8e04777 c56be29 8e04777 6ad3683 1ec086b 3eec0bf b7c73d3 3eec0bf c56be29 3eec0bf 8c6662d 3eec0bf 8c6662d 6ad3683 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
---
language:
- en
pretty_name: 'Comics: Pick-A-Panel'
tags:
- comics
dataset_info:
- config_name: char_coherence
features:
- name: sample_id
dtype: string
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
- name: previous_panel_caption
dtype: string
splits:
- name: val
num_bytes: 379249617
num_examples: 143
- name: test
num_bytes: 1139813763
num_examples: 489
download_size: 1519137617
dataset_size: 1519063380
- config_name: caption_relevance
features:
- name: sample_id
dtype: string
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
- name: previous_panel_caption
dtype: string
splits:
- name: val
num_bytes: 530485241
num_examples: 262
- name: test
num_bytes: 1670410617
num_examples: 932
download_size: 2200220497
dataset_size: 2200895858
- config_name: sequence_filling
features:
- name: sample_id
dtype: string
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
- name: previous_panel_caption
dtype: string
splits:
- name: val
num_bytes: 1230082746
num_examples: 262
- name: test
num_bytes: 3889446893
num_examples: 932
download_size: 4961489402
dataset_size: 5119529639
- config_name: text_closure
features:
- name: sample_id
dtype: string
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
- name: previous_panel_caption
dtype: string
splits:
- name: test
num_bytes: 2839781239
num_examples: 924
- name: val
num_bytes: 886890050
num_examples: 259
download_size: 4657519865
dataset_size: 3726671289
- config_name: visual_closure
features:
- name: sample_id
dtype: string
- name: context
sequence: image
- name: options
sequence: image
- name: index
dtype: int32
- name: solution_index
dtype: int32
- name: split
dtype: string
- name: task_type
dtype: string
- name: previous_panel_caption
dtype: string
splits:
- name: val
num_bytes: 1356539432
num_examples: 300
- name: test
num_bytes: 4020998551
num_examples: 1000
download_size: 10043154153
dataset_size: 5377537983
configs:
- config_name: char_coherence
data_files:
- split: val
path: char_coherence/val-*
- split: test
path: char_coherence/test-*
- config_name: caption_relevance
data_files:
- split: val
path: caption_relevance/val-*
- split: test
path: caption_relevance/test-*
- config_name: sequence_filling
data_files:
- split: val
path: sequence_filling/val-*
- split: test
path: sequence_filling/test-*
- config_name: text_closure
data_files:
- split: val
path: text_closure/val-*
- split: test
path: text_closure/test-*
- config_name: visual_closure
data_files:
- split: val
path: visual_closure/val-*
- split: test
path: visual_closure/test-*
license: cc-by-sa-4.0
---
# Comics: Pick-A-Panel
This is the dataset for the [ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models](https://rrc.cvc.uab.es/?ch=31&com=introduction)
The competition is hosted in the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction) and the leaderboard is available [here](https://rrc.cvc.uab.es/?ch=31&com=evaluation).
The dataset contains five subtask or skills:
<details>
<summary>Sequence Filling</summary>

Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to pick the panel that best fits the sequence.
</details>
<details>
<summary>Character Coherence, Visual Closure, Text Closure</summary>

These skills require understanding the context sequence to then pick the best panel to continue the story, focusing on the characters, the visual elements, and the text:
- Character Coherence: Given a sequence of comic panels, pick the panel from the two options that best continues the story in a coherent with the characters. Both options are the same panel, but the text in the speech bubbles has been swapped.
- Visual Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the visual elements.
- Text Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the text. All options are the same panel, but with text in the speech retrieved from different panels.
</details>
<details>
<summary>Caption Relevance</summary>

Given a caption from the previous panel, select the panel that best continues the story.
</details>
## Loading the Data
```python
from datasets import load_dataset
skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance"
split = "val" # "val", "test"
dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split=split)
```
<details>
<summary>Map to single images</summary>
If your model can only process single images, you can render each sample as a single image:

```python
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from datasets import Features, Value, Image as ImageFeature
class SingleImagePickAPanel:
def __init__(self, max_size=500, margin=10, label_space=20, font_path=None):
if font_path is None:
raise ValueError("Font path must be provided. Testing was done with 'Arial.ttf'")
self.max_size = max_size
self.margin = margin
self.label_space = label_space
# Add separate font sizes
self.label_font_size = 20
self.number_font_size = 24
self.font_path = font_path
def resize_image(self, img):
"""Resize image keeping aspect ratio if longest edge > max_size"""
if max(img.size) > self.max_size:
ratio = self.max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
return img.resize(new_size, Image.Resampling.LANCZOS)
return img
def create_mask_panel(self, width, height):
"""Create a question mark panel"""
mask_panel = Image.new("RGB", (width, height), (200, 200, 200))
draw = ImageDraw.Draw(mask_panel)
font_size = int(height * 0.8)
try:
font = ImageFont.truetype(self.font_path, font_size)
except:
raise ValueError("Font file not found")
text = "?"
bbox = draw.textbbox((0, 0), text, font=font)
text_x = (width - (bbox[2] - bbox[0])) // 2
text_y = (height - (bbox[3] - bbox[1])) // 2
draw.text((text_x, text_y), text, fill="black", font=font)
return mask_panel
def draw_number_on_panel(self, panel, number, font):
"""Draw number on the bottom of the panel with background"""
draw = ImageDraw.Draw(panel)
# Get text size
bbox = draw.textbbox((0, 0), str(number), font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
# Calculate position (bottom-right corner)
padding = 2
text_x = panel.size[0] - text_width - padding
text_y = panel.size[1] - text_height - padding
# Draw semi-transparent background
bg_rect = [(text_x - padding, text_y - padding),
(text_x + text_width + padding, text_y + text_height + padding)]
draw.rectangle(bg_rect, fill=(255, 255, 255, 180))
# Draw text
draw.text((text_x, text_y), str(number), fill="black", font=font)
return panel
def map_to_single_image(self, examples):
"""Process a batch of examples from a HuggingFace dataset"""
single_images = []
for i in range(len(examples['sample_id'])):
# Get context and options for current example
context = examples['context'][i] if len(examples['context'][i]) > 0 else []
options = examples['options'][i]
# Resize all images
context = [self.resize_image(img) for img in context]
options = [self.resize_image(img) for img in options]
# Calculate common panel size (use median size to avoid outliers)
all_panels = context + options
if len(all_panels) > 0:
widths = [img.size[0] for img in all_panels]
heights = [img.size[1] for img in all_panels]
panel_width = int(np.median(widths))
panel_height = int(np.median(heights))
# Resize all panels to common size
context = [img.resize((panel_width, panel_height)) for img in context]
options = [img.resize((panel_width, panel_height)) for img in options]
# Create mask panel for sequence filling tasks if needed
if 'index' in examples and len(context) > 0:
mask_idx = examples['index'][i]
mask_panel = self.create_mask_panel(panel_width, panel_height)
context.insert(mask_idx, mask_panel)
# Calculate canvas dimensions based on whether we have context
if len(context) > 0:
context_row_width = panel_width * len(context) + self.margin * (len(context) - 1)
options_row_width = panel_width * len(options) + self.margin * (len(options) - 1)
canvas_width = max(context_row_width, options_row_width)
canvas_height = (panel_height * 2 +
self.label_space * 2)
else:
# Only options row for caption_relevance
canvas_width = panel_width * len(options) + self.margin * (len(options) - 1)
canvas_height = (panel_height +
self.label_space)
# Create canvas
final_image = Image.new("RGB", (canvas_width, canvas_height), "white")
draw = ImageDraw.Draw(final_image)
try:
label_font = ImageFont.truetype(self.font_path, self.label_font_size)
number_font = ImageFont.truetype(self.font_path, self.number_font_size)
except:
raise ValueError("Font file not found")
current_y = 0
# Add context section if it exists
if len(context) > 0:
# Draw "Context" label
bbox = draw.textbbox((0, 0), "Context", font=label_font)
text_x = (canvas_width - (bbox[2] - bbox[0])) // 2
draw.text((text_x, current_y), "Context", fill="black", font=label_font)
current_y += self.label_space
# Paste context panels
x_offset = (canvas_width - (panel_width * len(context) +
self.margin * (len(context) - 1))) // 2
for panel in context:
final_image.paste(panel, (x_offset, current_y))
x_offset += panel_width + self.margin
current_y += panel_height
# Add "Options" label
bbox = draw.textbbox((0, 0), "Options", font=label_font)
text_x = (canvas_width - (bbox[2] - bbox[0])) // 2
draw.text((text_x, current_y), "Options", fill="black", font=label_font)
current_y += self.label_space
# Paste options with numbers on panels
x_offset = (canvas_width - (panel_width * len(options) +
self.margin * (len(options) - 1))) // 2
for idx, panel in enumerate(options):
# Create a copy of the panel to draw on
panel_with_number = panel.copy()
if panel_with_number.mode != 'RGBA':
panel_with_number = panel_with_number.convert('RGBA')
# Draw number on panel
panel_with_number = self.draw_number_on_panel(
panel_with_number,
idx,
number_font
)
# Paste the panel with number
final_image.paste(panel_with_number, (x_offset, current_y), panel_with_number)
x_offset += panel_width + self.margin
# Convert final_image to PIL Image format (instead of numpy array)
single_images.append(final_image)
# Prepare batch output
examples['single_image'] = single_images
return examples
from datasets import load_dataset
skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance"
split = "val" # "val", "test"
dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split=split)
processor = SingleImagePickAPanel()
dataset = dataset.map(
processor.map_to_single_image,
batched=True,
batch_size=32,
remove_columns=['context', 'options']
)
dataset.save_to_disk(f"ComicsPAP_{skill}_{split}_single_images")
```
</details>
## Evaluation
The evaluation metric for all tasks is the accuracy of the model's predictions. The overall accuracy is calculated as the weighted average of the accuracy of each subtask, with the weights being the number of examples in each subtask.
To evaluate on the test set you must submit your predictions to the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction), as a json file with the following structure:
```json
[
{ "sample_id" : "sample_id_0", "correct_panel_id" : 3},
{ "sample_id" : "sample_id_1", "correct_panel_id" : 1},
{ "sample_id" : "sample_id_2", "correct_panel_id" : 4},
...,
]
```
Where `sample_id` is the id of the sample, `correct_panel_id` is the prediction of your model as the index of the correct panel in the options.
<details>
<summary>Pseudocode for the evaluation on val set, adapt for your model:</summary>
```python
skills = {
"sequence_filling": {
"num_examples": 262
},
"char_coherence": {
"num_examples": 143
},
"visual_closure": {
"num_examples": 300
},
"text_closure": {
"num_examples": 259
},
"caption_relevance": {
"num_examples": 262
}
}
for skill in skills:
dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split="val")
correct = 0
total = 0
for example in dataset:
# Your model prediction
prediction = model.generate(**example)
prediction = post_process(prediction)
if prediction == example["solution_index"]:
correct += 1
total += 1
accuracy = correct / total
print(f"Accuracy for {skill}: {accuracy}")
assert total == skills[skill]["num_examples"]
skills[skill]["accuracy"] = accuracy
# Calculate overall accuracy
total_examples = sum(skill["num_examples"] for skill in skills.values())
overall_accuracy = sum(skill["num_examples"] * skill["accuracy"] for skill in skills.values()) / total_examples
print(f"Overall accuracy: {overall_accuracy}")
```
</details>
## Baselines
_Results and Code for baselines coming on 25/02/2025_
## Citation
_coming soon_ |