--- language: - en pretty_name: 'Comics: Pick-A-Panel' tags: - comics dataset_info: - config_name: caption_relevance features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 530485241.0 num_examples: 262 - name: test num_bytes: 1670410617.0 num_examples: 932 download_size: 2200220497 dataset_size: 2200895858.0 - config_name: char_coherence features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 379249617.0 num_examples: 143 download_size: 379268925 dataset_size: 379249617.0 - config_name: sequence_filling features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 1230082746.0 num_examples: 262 download_size: 1153097954 dataset_size: 1230082746.0 - config_name: text_closure features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 952974973.0 num_examples: 274 download_size: 930660064 dataset_size: 952974973.0 configs: - config_name: caption_relevance data_files: - split: val path: caption_relevance/val-* - split: test path: caption_relevance/test-* - config_name: char_coherence data_files: - split: val path: char_coherence/val-* - config_name: sequence_filling data_files: - split: val path: sequence_filling/val-* - config_name: text_closure data_files: - split: val path: text_closure/val-* --- # Comics: Pick-A-Panel This is the dataset for the [ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models](https://rrc.cvc.uab.es/?ch=31&com=introduction) The dataset contains five subtask or skills: ### Sequence Filling
Task Description ![Sequence Filling](figures/seq_filling.png) Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to select the panel that best fits the sequence.
### Character Coherence, Visual Closure, Text Closure
Task Description ![Character Coherence](figures/closure.png) These skills require understanding the context sequence to then pick the best panel to continue the story, focusing on the characters, the visual elements, and the text: - Character Coherence: Given a sequence of comic panels, pick the panel from the two options that best continues the story in a coherent with the characters. Both options are the same panel, but the text in the speech bubbles is has been swapped. - Visual Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the visual elements. - Text Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the text. All options are the same panel, but with text in the speech retrieved from different panels.
### Caption Relevance
Task Description ![Caption Relevance](figures/caption_relevance.png) Given a caption from the previous panel, select the panel that best continues the story.
## Loading the Data ```python from datasets import load_dataset skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance" split = "val" # "val", "test" dataset = load_dataset("VLR-CVC/ComPAP", skill, split=split) ```
Map to single images If your model can only process single images, you can render each sample as a single image: ![Single Image Example](figures/single_image_seq_filling_example.png) ```python from PIL import Image, ImageDraw, ImageFont import numpy as np from datasets import Features, Value, Image as ImageFeature class SingleImagePickAPanel: def __init__(self, max_size=500, margin=10, label_space=20, font_path="Arial.ttf"): self.max_size = max_size self.margin = margin self.label_space = label_space # Add separate font sizes self.label_font_size = 20 self.number_font_size = 24 self.font_path = font_path def resize_image(self, img): """Resize image keeping aspect ratio if longest edge > max_size""" if max(img.size) > self.max_size: ratio = self.max_size / max(img.size) new_size = tuple(int(dim * ratio) for dim in img.size) return img.resize(new_size, Image.Resampling.LANCZOS) return img def create_mask_panel(self, width, height): """Create a question mark panel""" mask_panel = Image.new("RGB", (width, height), (200, 200, 200)) draw = ImageDraw.Draw(mask_panel) font_size = int(height * 0.8) try: font = ImageFont.truetype(self.font_path, font_size) except: raise ValueError("Font file not found") text = "?" bbox = draw.textbbox((0, 0), text, font=font) text_x = (width - (bbox[2] - bbox[0])) // 2 text_y = (height - (bbox[3] - bbox[1])) // 2 draw.text((text_x, text_y), text, fill="black", font=font) return mask_panel def draw_number_on_panel(self, panel, number, font): """Draw number on the bottom of the panel with background""" draw = ImageDraw.Draw(panel) # Get text size bbox = draw.textbbox((0, 0), str(number), font=font) text_width = bbox[2] - bbox[0] text_height = bbox[3] - bbox[1] # Calculate position (bottom-right corner) padding = 2 text_x = panel.size[0] - text_width - padding text_y = panel.size[1] - text_height - padding # Draw semi-transparent background bg_rect = [(text_x - padding, text_y - padding), (text_x + text_width + padding, text_y + text_height + padding)] draw.rectangle(bg_rect, fill=(255, 255, 255, 180)) # Draw text draw.text((text_x, text_y), str(number), fill="black", font=font) return panel def map_to_single_image(self, examples): """Process a batch of examples from a HuggingFace dataset""" single_images = [] for i in range(len(examples['sample_id'])): # Get context and options for current example context = examples['context'][i] if len(examples['context'][i]) > 0 else [] options = examples['options'][i] # Resize all images context = [self.resize_image(img) for img in context] options = [self.resize_image(img) for img in options] # Calculate common panel size (use median size to avoid outliers) all_panels = context + options if len(all_panels) > 0: widths = [img.size[0] for img in all_panels] heights = [img.size[1] for img in all_panels] panel_width = int(np.median(widths)) panel_height = int(np.median(heights)) # Resize all panels to common size context = [img.resize((panel_width, panel_height)) for img in context] options = [img.resize((panel_width, panel_height)) for img in options] # Create mask panel for sequence filling tasks if needed if 'index' in examples and len(context) > 0: mask_idx = examples['index'][i] mask_panel = self.create_mask_panel(panel_width, panel_height) context.insert(mask_idx, mask_panel) # Calculate canvas dimensions based on whether we have context if len(context) > 0: context_row_width = panel_width * len(context) + self.margin * (len(context) - 1) options_row_width = panel_width * len(options) + self.margin * (len(options) - 1) canvas_width = max(context_row_width, options_row_width) canvas_height = (panel_height * 2 + self.label_space * 2) else: # Only options row for caption_relevance canvas_width = panel_width * len(options) + self.margin * (len(options) - 1) canvas_height = (panel_height + self.label_space) # Create canvas final_image = Image.new("RGB", (canvas_width, canvas_height), "white") draw = ImageDraw.Draw(final_image) try: label_font = ImageFont.truetype(self.font_path, self.label_font_size) number_font = ImageFont.truetype(self.font_path, self.number_font_size) except: raise ValueError("Font file not found") current_y = 0 # Add context section if it exists if len(context) > 0: # Draw "Context" label bbox = draw.textbbox((0, 0), "Context", font=label_font) text_x = (canvas_width - (bbox[2] - bbox[0])) // 2 draw.text((text_x, current_y), "Context", fill="black", font=label_font) current_y += self.label_space # Paste context panels x_offset = (canvas_width - (panel_width * len(context) + self.margin * (len(context) - 1))) // 2 for panel in context: final_image.paste(panel, (x_offset, current_y)) x_offset += panel_width + self.margin current_y += panel_height # Add "Options" label bbox = draw.textbbox((0, 0), "Options", font=label_font) text_x = (canvas_width - (bbox[2] - bbox[0])) // 2 draw.text((text_x, current_y), "Options", fill="black", font=label_font) current_y += self.label_space # Paste options with numbers on panels x_offset = (canvas_width - (panel_width * len(options) + self.margin * (len(options) - 1))) // 2 for idx, panel in enumerate(options): # Create a copy of the panel to draw on panel_with_number = panel.copy() if panel_with_number.mode != 'RGBA': panel_with_number = panel_with_number.convert('RGBA') # Draw number on panel panel_with_number = self.draw_number_on_panel( panel_with_number, idx, number_font ) # Paste the panel with number final_image.paste(panel_with_number, (x_offset, current_y), panel_with_number) x_offset += panel_width + self.margin # Convert final_image to PIL Image format (instead of numpy array) single_images.append(final_image) # Prepare batch output examples['single_image'] = single_images return examples from datasets import load_dataset skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance" split = "val" # "val", "test" dataset = load_dataset("VLR-CVC/ComPAP", skill, split=split) processor = SingleImagePickAPanel() dataset = dataset.map( processor.map_to_single_image, batched=True, batch_size=32, remove_columns=['context', 'options'] ) dataset.save_to_disk(f"ComPAP_{skill}_{split}_single_images") ```
## Summit Results and Leaderboard The competition is hosted in the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction) and the leaderboard is available [here](https://rrc.cvc.uab.es/?ch=31&com=evaluation). ## Citation _coming soon_