--- language: - en pretty_name: 'Comics: Pick-A-Panel' tags: - comics dataset_info: - config_name: char_coherence features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 379249617 num_examples: 143 - name: test num_bytes: 1139813763 num_examples: 489 download_size: 1519137617 dataset_size: 1519063380 - config_name: caption_relevance features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 530485241 num_examples: 262 - name: test num_bytes: 1670410617 num_examples: 932 download_size: 2200220497 dataset_size: 2200895858 - config_name: sequence_filling features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 1230082746 num_examples: 262 - name: test num_bytes: 3889446893 num_examples: 932 download_size: 4961489402 dataset_size: 5119529639 - config_name: text_closure features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: test num_bytes: 2839781239 num_examples: 924 - name: val num_bytes: 886890050 num_examples: 259 download_size: 4657519865 dataset_size: 3726671289 - config_name: visual_closure features: - name: sample_id dtype: string - name: context sequence: image - name: options sequence: image - name: index dtype: int32 - name: solution_index dtype: int32 - name: split dtype: string - name: task_type dtype: string - name: previous_panel_caption dtype: string splits: - name: val num_bytes: 1356539432 num_examples: 300 - name: test num_bytes: 4020998551 num_examples: 1000 download_size: 10043154153 dataset_size: 5377537983 configs: - config_name: char_coherence data_files: - split: val path: char_coherence/val-* - split: test path: char_coherence/test-* - config_name: caption_relevance data_files: - split: val path: caption_relevance/val-* - split: test path: caption_relevance/test-* - config_name: sequence_filling data_files: - split: val path: sequence_filling/val-* - split: test path: sequence_filling/test-* - config_name: text_closure data_files: - split: val path: text_closure/val-* - split: test path: text_closure/test-* - config_name: visual_closure data_files: - split: val path: visual_closure/val-* - split: test path: visual_closure/test-* license: cc-by-sa-4.0 --- # Comics: Pick-A-Panel This is the dataset for the [ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models](https://rrc.cvc.uab.es/?ch=31&com=introduction) The competition is hosted in the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction) and the leaderboard is available [here](https://rrc.cvc.uab.es/?ch=31&com=evaluation). The dataset contains five subtask or skills:
Sequence Filling ![Sequence Filling](figures/seq_filling.png) Given a sequence of comic panels, a missing panel, and a set of option panels, the task is to pick the panel that best fits the sequence.
Character Coherence, Visual Closure, Text Closure ![Character Coherence](figures/closure.png) These skills require understanding the context sequence to then pick the best panel to continue the story, focusing on the characters, the visual elements, and the text: - Character Coherence: Given a sequence of comic panels, pick the panel from the two options that best continues the story in a coherent with the characters. Both options are the same panel, but the text in the speech bubbles has been swapped. - Visual Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the visual elements. - Text Closure: Given a sequence of comic panels, pick the panel from the options that best continues the story in a coherent way with the text. All options are the same panel, but with text in the speech retrieved from different panels.
Caption Relevance ![Caption Relevance](figures/caption_relevance.png) Given a caption from the previous panel, select the panel that best continues the story.
## Loading the Data ```python from datasets import load_dataset skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance" split = "val" # "val", "test" dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split=split) ```
Map to single images If your model can only process single images, you can render each sample as a single image: ![Single Image Example](figures/single_image_seq_filling_example.png) ```python from PIL import Image, ImageDraw, ImageFont import numpy as np from datasets import Features, Value, Image as ImageFeature class SingleImagePickAPanel: def __init__(self, max_size=500, margin=10, label_space=20, font_path=None): if font_path is None: raise ValueError("Font path must be provided. Testing was done with 'Arial.ttf'") self.max_size = max_size self.margin = margin self.label_space = label_space # Add separate font sizes self.label_font_size = 20 self.number_font_size = 24 self.font_path = font_path def resize_image(self, img): """Resize image keeping aspect ratio if longest edge > max_size""" if max(img.size) > self.max_size: ratio = self.max_size / max(img.size) new_size = tuple(int(dim * ratio) for dim in img.size) return img.resize(new_size, Image.Resampling.LANCZOS) return img def create_mask_panel(self, width, height): """Create a question mark panel""" mask_panel = Image.new("RGB", (width, height), (200, 200, 200)) draw = ImageDraw.Draw(mask_panel) font_size = int(height * 0.8) try: font = ImageFont.truetype(self.font_path, font_size) except: raise ValueError("Font file not found") text = "?" bbox = draw.textbbox((0, 0), text, font=font) text_x = (width - (bbox[2] - bbox[0])) // 2 text_y = (height - (bbox[3] - bbox[1])) // 2 draw.text((text_x, text_y), text, fill="black", font=font) return mask_panel def draw_number_on_panel(self, panel, number, font): """Draw number on the bottom of the panel with background""" draw = ImageDraw.Draw(panel) # Get text size bbox = draw.textbbox((0, 0), str(number), font=font) text_width = bbox[2] - bbox[0] text_height = bbox[3] - bbox[1] # Calculate position (bottom-right corner) padding = 2 text_x = panel.size[0] - text_width - padding text_y = panel.size[1] - text_height - padding # Draw semi-transparent background bg_rect = [(text_x - padding, text_y - padding), (text_x + text_width + padding, text_y + text_height + padding)] draw.rectangle(bg_rect, fill=(255, 255, 255, 180)) # Draw text draw.text((text_x, text_y), str(number), fill="black", font=font) return panel def map_to_single_image(self, examples): """Process a batch of examples from a HuggingFace dataset""" single_images = [] for i in range(len(examples['sample_id'])): # Get context and options for current example context = examples['context'][i] if len(examples['context'][i]) > 0 else [] options = examples['options'][i] # Resize all images context = [self.resize_image(img) for img in context] options = [self.resize_image(img) for img in options] # Calculate common panel size (use median size to avoid outliers) all_panels = context + options if len(all_panels) > 0: widths = [img.size[0] for img in all_panels] heights = [img.size[1] for img in all_panels] panel_width = int(np.median(widths)) panel_height = int(np.median(heights)) # Resize all panels to common size context = [img.resize((panel_width, panel_height)) for img in context] options = [img.resize((panel_width, panel_height)) for img in options] # Create mask panel for sequence filling tasks if needed if 'index' in examples and len(context) > 0: mask_idx = examples['index'][i] mask_panel = self.create_mask_panel(panel_width, panel_height) context.insert(mask_idx, mask_panel) # Calculate canvas dimensions based on whether we have context if len(context) > 0: context_row_width = panel_width * len(context) + self.margin * (len(context) - 1) options_row_width = panel_width * len(options) + self.margin * (len(options) - 1) canvas_width = max(context_row_width, options_row_width) canvas_height = (panel_height * 2 + self.label_space * 2) else: # Only options row for caption_relevance canvas_width = panel_width * len(options) + self.margin * (len(options) - 1) canvas_height = (panel_height + self.label_space) # Create canvas final_image = Image.new("RGB", (canvas_width, canvas_height), "white") draw = ImageDraw.Draw(final_image) try: label_font = ImageFont.truetype(self.font_path, self.label_font_size) number_font = ImageFont.truetype(self.font_path, self.number_font_size) except: raise ValueError("Font file not found") current_y = 0 # Add context section if it exists if len(context) > 0: # Draw "Context" label bbox = draw.textbbox((0, 0), "Context", font=label_font) text_x = (canvas_width - (bbox[2] - bbox[0])) // 2 draw.text((text_x, current_y), "Context", fill="black", font=label_font) current_y += self.label_space # Paste context panels x_offset = (canvas_width - (panel_width * len(context) + self.margin * (len(context) - 1))) // 2 for panel in context: final_image.paste(panel, (x_offset, current_y)) x_offset += panel_width + self.margin current_y += panel_height # Add "Options" label bbox = draw.textbbox((0, 0), "Options", font=label_font) text_x = (canvas_width - (bbox[2] - bbox[0])) // 2 draw.text((text_x, current_y), "Options", fill="black", font=label_font) current_y += self.label_space # Paste options with numbers on panels x_offset = (canvas_width - (panel_width * len(options) + self.margin * (len(options) - 1))) // 2 for idx, panel in enumerate(options): # Create a copy of the panel to draw on panel_with_number = panel.copy() if panel_with_number.mode != 'RGBA': panel_with_number = panel_with_number.convert('RGBA') # Draw number on panel panel_with_number = self.draw_number_on_panel( panel_with_number, idx, number_font ) # Paste the panel with number final_image.paste(panel_with_number, (x_offset, current_y), panel_with_number) x_offset += panel_width + self.margin # Convert final_image to PIL Image format (instead of numpy array) single_images.append(final_image) # Prepare batch output examples['single_image'] = single_images return examples from datasets import load_dataset skill = "sequence_filling" # "sequence_filling", "char_coherence", "visual_closure", "text_closure", "caption_relevance" split = "val" # "val", "test" dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split=split) processor = SingleImagePickAPanel() dataset = dataset.map( processor.map_to_single_image, batched=True, batch_size=32, remove_columns=['context', 'options'] ) dataset.save_to_disk(f"ComicsPAP_{skill}_{split}_single_images") ```
## Evaluation The evaluation metric for all tasks is the accuracy of the model's predictions. The overall accuracy is calculated as the weighted average of the accuracy of each subtask, with the weights being the number of examples in each subtask. To evaluate on the test set you must submit your predictions to the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction), as a json file with the following structure: ```json [ { "sample_id" : "sample_id_0", "correct_panel_id" : 3}, { "sample_id" : "sample_id_1", "correct_panel_id" : 1}, { "sample_id" : "sample_id_2", "correct_panel_id" : 4}, ..., ] ``` Where `sample_id` is the id of the sample, `correct_panel_id` is the prediction of your model as the index of the correct panel in the options.
Pseudocode for the evaluation on val set, adapt for your model: ```python skills = { "sequence_filling": { "num_examples": 262 }, "char_coherence": { "num_examples": 143 }, "visual_closure": { "num_examples": 300 }, "text_closure": { "num_examples": 259 }, "caption_relevance": { "num_examples": 262 } } for skill in skills: dataset = load_dataset("VLR-CVC/ComicsPAP", skill, split="val") correct = 0 total = 0 for example in dataset: # Your model prediction prediction = model.generate(**example) prediction = post_process(prediction) if prediction == example["solution_index"]: correct += 1 total += 1 accuracy = correct / total print(f"Accuracy for {skill}: {accuracy}") assert total == skills[skill]["num_examples"] skills[skill]["accuracy"] = accuracy # Calculate overall accuracy total_examples = sum(skill["num_examples"] for skill in skills.values()) overall_accuracy = sum(skill["num_examples"] * skill["accuracy"] for skill in skills.values()) / total_examples print(f"Overall accuracy: {overall_accuracy}") ```
## Baselines _Results and Code for baselines coming on 25/02/2025_ ## Citation _coming soon_