andandandand commited on
Commit
f61d280
·
verified ·
1 Parent(s): 3cfccbc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -125
README.md CHANGED
@@ -12,63 +12,23 @@ tags:
12
  - fiftyone
13
  - image
14
  - image-classification
 
 
 
 
 
 
15
  overwrite: true
16
- dataset_summary: '
17
-
18
-
19
-
20
-
21
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 169 samples.
22
-
23
-
24
- ## Installation
25
-
26
-
27
- If you haven''t already, install FiftyOne:
28
-
29
-
30
- ```bash
31
-
32
- pip install -U fiftyone
33
-
34
- ```
35
-
36
-
37
- ## Usage
38
-
39
-
40
- ```python
41
-
42
- import fiftyone as fo
43
-
44
- from fiftyone.utils.huggingface import load_from_hub
45
-
46
-
47
- # Load the dataset
48
-
49
- # Note: other available arguments include ''max_samples'', etc
50
-
51
- dataset = load_from_hub("andandandand/bo_or_not")
52
-
53
-
54
- # Launch the App
55
-
56
- session = fo.launch_app(dataset)
57
-
58
- ```
59
-
60
- '
61
  ---
62
 
63
- # Dataset Card for bo-dataset
64
-
65
- <!-- Provide a quick summary of the dataset. -->
66
-
67
-
68
 
 
69
 
 
70
 
71
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 169 samples.
72
 
73
  ## Installation
74
 
@@ -92,135 +52,161 @@ dataset = load_from_hub("andandandand/bo_or_not")
92
  session = fo.launch_app(dataset)
93
  ```
94
 
95
-
96
  ## Dataset Details
97
 
98
  ### Dataset Description
99
 
100
- <!-- Provide a longer summary of what this dataset is. -->
101
-
102
 
 
 
 
 
103
 
104
- - **Curated by:** [More Information Needed]
105
- - **Funded by [optional]:** [More Information Needed]
106
- - **Shared by [optional]:** [More Information Needed]
107
- - **Language(s) (NLP):** en
108
- - **License:** mit
109
 
110
- ### Dataset Sources [optional]
111
-
112
- <!-- Provide the basic links for the dataset. -->
113
-
114
- - **Repository:** [More Information Needed]
115
- - **Paper [optional]:** [More Information Needed]
116
- - **Demo [optional]:** [More Information Needed]
117
 
118
  ## Uses
119
 
120
- <!-- Address questions around how the dataset is intended to be used. -->
121
-
122
  ### Direct Use
123
 
124
- <!-- This section describes suitable use cases for the dataset. -->
125
-
126
- [More Information Needed]
 
 
 
127
 
128
  ### Out-of-Scope Use
129
 
130
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
131
-
132
- [More Information Needed]
 
 
133
 
134
  ## Dataset Structure
135
 
136
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
- [More Information Needed]
 
139
 
140
  ## Dataset Creation
141
 
142
  ### Curation Rationale
143
 
144
- <!-- Motivation for the creation of this dataset. -->
145
-
146
- [More Information Needed]
147
 
148
  ### Source Data
149
 
150
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
151
-
152
  #### Data Collection and Processing
153
 
154
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
155
-
156
- [More Information Needed]
 
 
157
 
158
- #### Who are the source data producers?
159
-
160
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
161
-
162
- [More Information Needed]
163
-
164
- ### Annotations [optional]
165
 
166
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
 
 
 
 
 
 
167
 
168
- #### Annotation process
169
 
170
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
171
 
172
- [More Information Needed]
173
 
174
- #### Who are the annotators?
 
 
 
 
 
 
175
 
176
- <!-- This section describes the people or systems who created the annotations. -->
177
 
178
- [More Information Needed]
179
 
180
- #### Personal and Sensitive Information
 
 
 
 
181
 
182
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
183
 
184
- [More Information Needed]
 
 
 
 
185
 
186
  ## Bias, Risks, and Limitations
187
 
188
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
189
 
190
- [More Information Needed]
 
 
 
 
191
 
192
- ### Recommendations
193
 
194
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
195
 
196
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
197
 
198
- ## Citation [optional]
199
 
200
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
201
 
202
  **BibTeX:**
203
-
204
- [More Information Needed]
 
 
 
 
 
 
 
205
 
206
  **APA:**
 
207
 
208
- [More Information Needed]
209
-
210
- ## Glossary [optional]
211
-
212
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
213
-
214
- [More Information Needed]
215
-
216
- ## More Information [optional]
217
-
218
- [More Information Needed]
219
-
220
- ## Dataset Card Authors [optional]
221
 
222
- [More Information Needed]
223
 
224
  ## Dataset Card Contact
225
 
226
- [More Information Needed]
 
12
  - fiftyone
13
  - image
14
  - image-classification
15
+ - transfer-learning
16
+ - vgg16
17
+ - binary-classification
18
+ - computer-vision
19
+ - pets
20
+ - dogs
21
  overwrite: true
22
+ dataset_summary: 'Binary classification dataset for identifying Bo (Barack Obama''s Portuguese Water Dog) versus other pets. This FiftyOne dataset contains 169 samples and was created for demonstrating transfer learning with VGG16.'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ---
24
 
25
+ ![Bo Dataset](bo_dataset.png)
 
 
 
 
26
 
27
+ # Dataset Card for bo-dataset
28
 
29
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1XFoKgM_WQ9l2WgK6aS5GLFGc8uv0cdGB)
30
 
31
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 169 samples designed for binary classification of Bo (Barack Obama's Portuguese Water Dog) versus other pets.
32
 
33
  ## Installation
34
 
 
52
  session = fo.launch_app(dataset)
53
  ```
54
 
 
55
  ## Dataset Details
56
 
57
  ### Dataset Description
58
 
59
+ This dataset contains images for binary classification between Bo (Barack Obama's Portuguese Water Dog) and other pets (cats and dogs). The dataset was created to demonstrate transfer learning techniques using a pre-trained VGG16 model. Bo was a Portuguese Water Dog who lived in the White House during Barack Obama's presidency.
 
60
 
61
+ - **Curated by:** Antonio Rueda-Toicen ([email protected])
62
+ - **Language(s):** en
63
+ - **License:** Creative Commons Attribution 4.0 International License (CC BY 4.0)
64
+ - **Repository:** [Colab Notebook](https://colab.research.google.com/drive/1XFoKgM_WQ9l2WgK6aS5GLFGc8uv0cdGB)
65
 
66
+ ### Dataset Sources
 
 
 
 
67
 
68
+ - **Original Data Source:** [Presidential Doggy Door - Kaggle](https://www.kaggle.com/datasets/drvnmanju/presidential-doggy-door)
69
+ - **Tutorial Implementation:** [Google Colab Notebook](https://colab.research.google.com/drive/1XFoKgM_WQ9l2WgK6aS5GLFGc8uv0cdGB)
70
+ - **Alternative Access:** [Google Drive](https://drive.google.com/drive/folders/1EU1ujeNtvsaKAIeyS7J8BDFC60iHvwi1?usp=drive_link)
 
 
 
 
71
 
72
  ## Uses
73
 
 
 
74
  ### Direct Use
75
 
76
+ This dataset is intended for:
77
+ - Binary image classification tasks
78
+ - Transfer learning demonstrations
79
+ - Computer vision education and tutorials
80
+ - Experimenting with pre-trained models like VGG16
81
+ - Learning FiftyOne dataset management and visualization
82
 
83
  ### Out-of-Scope Use
84
 
85
+ This dataset should not be used for:
86
+ - Production security systems
87
+ - Real-world pet identification systems
88
+ - Commercial applications without proper validation
89
+ - Any application requiring high accuracy pet identification
90
 
91
  ## Dataset Structure
92
 
93
+ The dataset contains 169 images split across three sets:
94
+ - **Training set:** 50% of original training data
95
+ - **Validation set:** 50% of original training data
96
+ - **Test set:** Independent test images
97
+
98
+ ### Data Fields
99
+
100
+ - `filepath`: Path to the image file
101
+ - `ground_truth`: Classification label ("bo" or "not_bo")
102
+ - `tags`: Dataset split indicators ("train", "validation", "test")
103
+ - `vgg16-imagenet-predictions`: Original VGG16 ImageNet predictions
104
+ - `vgg16-imagenet-embeddings`: Feature embeddings from VGG16
105
+ - `fine_tuned_vgg16_prediction`: Fine-tuned model predictions (test set only)
106
+
107
+ ### Label Distribution
108
 
109
+ - **bo**: Images of Bo (Barack Obama's Portuguese Water Dog)
110
+ - **not_bo**: Images of other pets (cats and dogs)
111
 
112
  ## Dataset Creation
113
 
114
  ### Curation Rationale
115
 
116
+ This dataset was created to demonstrate transfer learning concepts using a real-world scenario where a computer vision system needs to identify a specific individual (Bo) among other similar animals. The task simulates a security application while providing an engaging educational example.
 
 
117
 
118
  ### Source Data
119
 
 
 
120
  #### Data Collection and Processing
121
 
122
+ The images were collected and organized into a binary classification structure:
123
+ - Images of Bo were labeled as "bo"
124
+ - Images of other pets (cats and dogs) were labeled as "not_bo"
125
+ - Data was split into training/validation and test sets
126
+ - Images were processed using standard computer vision preprocessing techniques
127
 
128
+ #### Data Augmentation
 
 
 
 
 
 
129
 
130
+ The training process includes augmentation techniques:
131
+ - Affine transformations (translation, scaling, rotation)
132
+ - Elastic deformations
133
+ - Perspective transformations
134
+ - Horizontal flipping
135
+ - Brightness and contrast adjustments
136
+ - Random grayscale conversion
137
 
138
+ #### Who are the source data producers?
139
 
140
+ The dataset was curated by Antonio Rueda-Toicen for educational purposes as part of FiftyOne documentation and tutorials.
141
 
142
+ ### Model Training Details
143
 
144
+ The dataset includes results from transfer learning using:
145
+ - **Base Model:** VGG16 pre-trained on ImageNet
146
+ - **Architecture Modification:** Replaced final classifier for binary classification
147
+ - **Training Strategy:** Froze base VGG16 layers, trained only new classifier layers
148
+ - **Loss Function:** Binary Cross Entropy with Logits
149
+ - **Optimizer:** Adam (lr=0.003)
150
+ - **Training Epochs:** 10 epochs with early stopping
151
 
152
+ ## Technical Implementation
153
 
154
+ ### Preprocessing Pipeline
155
 
156
+ Images are processed using:
157
+ - Conversion to RGB format
158
+ - Resizing to 256x256 pixels
159
+ - Center cropping to 224x224 pixels
160
+ - Normalization with ImageNet statistics (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
161
 
162
+ ### Evaluation Metrics
163
 
164
+ The model performance is evaluated using:
165
+ - Binary classification accuracy
166
+ - Confusion matrix
167
+ - Per-class precision and recall
168
+ - FiftyOne's built-in evaluation tools
169
 
170
  ## Bias, Risks, and Limitations
171
 
172
+ ### Limitations
173
 
174
+ - Small dataset size (169 samples) limits generalization
175
+ - Limited to specific breeds and individuals
176
+ - May not generalize to other Portuguese Water Dogs
177
+ - Training data may not represent full diversity of pet appearances
178
+ - Designed for educational purposes, not production use
179
 
180
+ ### Potential Biases
181
 
182
+ - Dataset may be biased toward specific lighting conditions, angles, or image quality
183
+ - Limited representation of pet diversity
184
+ - Potential overfitting due to small dataset size
185
 
186
+ ### Recommendations
187
 
188
+ Users should be aware that this dataset is primarily educational and should not be used for production applications without significant additional validation and testing. The small size makes it unsuitable for robust real-world applications.
189
 
190
+ ## Citation
191
 
192
  **BibTeX:**
193
+ ```bibtex
194
+ @misc{rueda_toicen_2024_bo_dataset,
195
+ author = {Rueda-Toicen, Antonio},
196
+ title = {Bo or Not Bo: Binary Classification with Transfer Learning},
197
+ year = {2024},
198
+ url = {https://colab.research.google.com/drive/1XFoKgM_WQ9l2WgK6aS5GLFGc8uv0cdGB},
199
+ note = {FiftyOne educational dataset}
200
+ }
201
+ ```
202
 
203
  **APA:**
204
+ Rueda-Toicen, A. (2024). Bo or Not Bo: Binary Classification with Transfer Learning. FiftyOne Educational Dataset. https://colab.research.google.com/drive/1XFoKgM_WQ9l2WgK6aS5GLFGc8uv0cdGB
205
 
206
+ ## Dataset Card Authors
 
 
 
 
 
 
 
 
 
 
 
 
207
 
208
+ Antonio Rueda-Toicen ([email protected])
209
 
210
  ## Dataset Card Contact
211
 
212
+ For questions about this dataset, please contact Antonio Rueda-Toicen at [email protected] or visit the [FiftyOne documentation](https://docs.voxel51.com/).