|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD)]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float("inf") |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set((i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ((i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_images(images_path, input_size=448, max_num=1): |
|
transform = build_transform(input_size=input_size) |
|
pixel_values_list, num_patches_list = [], [] |
|
for image_path in images_path: |
|
img = Image.open(image_path).convert("RGB") |
|
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(tile) for tile in img] |
|
pixel_values = torch.stack(pixel_values) |
|
num_patches_list.append(pixel_values.shape[0]) |
|
pixel_values_list.append(pixel_values) |
|
pixel_values = torch.cat(pixel_values_list) |
|
return pixel_values, num_patches_list |
|
|
|
|
|
class InternVideo2_5(object): |
|
def __init__(self, gpu=1, model_path='OpenGVLab/InternVideo2_5_Chat_8B'): |
|
self.model_path = model_path |
|
self.device = torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu") |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().to(self.device).to(torch.bfloat16) |
|
self.generation_config = dict( |
|
do_sample=False, |
|
temperature=0.0, |
|
max_new_tokens=1024, |
|
top_p=0.1, |
|
num_beams=1 |
|
) |
|
|
|
def inference(self, images_path, qa): |
|
with torch.no_grad(): |
|
pixel_values, num_patches_list = load_images(images_path) |
|
pixel_values = pixel_values.to(torch.bfloat16).to(self.model.device) |
|
video_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))]) |
|
|
|
question = f"{video_prefix} This question is about the main topic discussed in the video. Question: {qa['question']} Choices: A) {qa['choice_a']} B) {qa['choice_b']} C) {qa['choice_c']} D) {qa['choice_d']}. Respond with a single capital letter (A, B, C, or D) only. No explanation. No punctuation. Just the letter." |
|
output, chat_history = self.model.chat(self.tokenizer, pixel_values, question, self.generation_config, num_patches_list=num_patches_list, history=None, return_history=True) |
|
return output |
|
|