diff --git a/spaces/0xSynapse/PixelFusion/README.md b/spaces/0xSynapse/PixelFusion/README.md deleted file mode 100644 index 2f0556a90084b2c7f67b53b96dc0df99c571267f..0000000000000000000000000000000000000000 --- a/spaces/0xSynapse/PixelFusion/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: PixelFusion -emoji: 🔥 -colorFrom: green -colorTo: yellow -sdk: gradio -sdk_version: 3.39.0 -app_file: app.py -pinned: false -license: gpl-3.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/17TheWord/RealESRGAN/realesrgan/data/realesrgan_dataset.py b/spaces/17TheWord/RealESRGAN/realesrgan/data/realesrgan_dataset.py deleted file mode 100644 index 4cf2d9e6583a6789b771679734ce55bb8a22e628..0000000000000000000000000000000000000000 --- a/spaces/17TheWord/RealESRGAN/realesrgan/data/realesrgan_dataset.py +++ /dev/null @@ -1,192 +0,0 @@ -import cv2 -import math -import numpy as np -import os -import os.path as osp -import random -import time -import torch -from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels -from basicsr.data.transforms import augment -from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor -from basicsr.utils.registry import DATASET_REGISTRY -from torch.utils import data as data - - -@DATASET_REGISTRY.register() -class RealESRGANDataset(data.Dataset): - """Dataset used for Real-ESRGAN model: - Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. - - It loads gt (Ground-Truth) images, and augments them. - It also generates blur kernels and sinc kernels for generating low-quality images. - Note that the low-quality images are processed in tensors on GPUS for faster processing. - - Args: - opt (dict): Config for train datasets. It contains the following keys: - dataroot_gt (str): Data root path for gt. - meta_info (str): Path for meta information file. - io_backend (dict): IO backend type and other kwarg. - use_hflip (bool): Use horizontal flips. - use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). - Please see more options in the codes. - """ - - def __init__(self, opt): - super(RealESRGANDataset, self).__init__() - self.opt = opt - self.file_client = None - self.io_backend_opt = opt['io_backend'] - self.gt_folder = opt['dataroot_gt'] - - # file client (lmdb io backend) - if self.io_backend_opt['type'] == 'lmdb': - self.io_backend_opt['db_paths'] = [self.gt_folder] - self.io_backend_opt['client_keys'] = ['gt'] - if not self.gt_folder.endswith('.lmdb'): - raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}") - with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: - self.paths = [line.split('.')[0] for line in fin] - else: - # disk backend with meta_info - # Each line in the meta_info describes the relative path to an image - with open(self.opt['meta_info']) as fin: - paths = [line.strip().split(' ')[0] for line in fin] - self.paths = [os.path.join(self.gt_folder, v) for v in paths] - - # blur settings for the first degradation - self.blur_kernel_size = opt['blur_kernel_size'] - self.kernel_list = opt['kernel_list'] - self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability - self.blur_sigma = opt['blur_sigma'] - self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels - self.betap_range = opt['betap_range'] # betap used in plateau blur kernels - self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters - - # blur settings for the second degradation - self.blur_kernel_size2 = opt['blur_kernel_size2'] - self.kernel_list2 = opt['kernel_list2'] - self.kernel_prob2 = opt['kernel_prob2'] - self.blur_sigma2 = opt['blur_sigma2'] - self.betag_range2 = opt['betag_range2'] - self.betap_range2 = opt['betap_range2'] - self.sinc_prob2 = opt['sinc_prob2'] - - # a final sinc filter - self.final_sinc_prob = opt['final_sinc_prob'] - - self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21 - # TODO: kernel range is now hard-coded, should be in the configure file - self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect - self.pulse_tensor[10, 10] = 1 - - def __getitem__(self, index): - if self.file_client is None: - self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) - - # -------------------------------- Load gt images -------------------------------- # - # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32. - gt_path = self.paths[index] - # avoid errors caused by high latency in reading files - retry = 3 - while retry > 0: - try: - img_bytes = self.file_client.get(gt_path, 'gt') - except (IOError, OSError) as e: - logger = get_root_logger() - logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}') - # change another file to read - index = random.randint(0, self.__len__()) - gt_path = self.paths[index] - time.sleep(1) # sleep 1s for occasional server congestion - else: - break - finally: - retry -= 1 - img_gt = imfrombytes(img_bytes, float32=True) - - # -------------------- Do augmentation for training: flip, rotation -------------------- # - img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot']) - - # crop or pad to 400 - # TODO: 400 is hard-coded. You may change it accordingly - h, w = img_gt.shape[0:2] - crop_pad_size = 400 - # pad - if h < crop_pad_size or w < crop_pad_size: - pad_h = max(0, crop_pad_size - h) - pad_w = max(0, crop_pad_size - w) - img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101) - # crop - if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size: - h, w = img_gt.shape[0:2] - # randomly choose top and left coordinates - top = random.randint(0, h - crop_pad_size) - left = random.randint(0, w - crop_pad_size) - img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...] - - # ------------------------ Generate kernels (used in the first degradation) ------------------------ # - kernel_size = random.choice(self.kernel_range) - if np.random.uniform() < self.opt['sinc_prob']: - # this sinc filter setting is for kernels ranging from [7, 21] - if kernel_size < 13: - omega_c = np.random.uniform(np.pi / 3, np.pi) - else: - omega_c = np.random.uniform(np.pi / 5, np.pi) - kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) - else: - kernel = random_mixed_kernels( - self.kernel_list, - self.kernel_prob, - kernel_size, - self.blur_sigma, - self.blur_sigma, [-math.pi, math.pi], - self.betag_range, - self.betap_range, - noise_range=None) - # pad kernel - pad_size = (21 - kernel_size) // 2 - kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) - - # ------------------------ Generate kernels (used in the second degradation) ------------------------ # - kernel_size = random.choice(self.kernel_range) - if np.random.uniform() < self.opt['sinc_prob2']: - if kernel_size < 13: - omega_c = np.random.uniform(np.pi / 3, np.pi) - else: - omega_c = np.random.uniform(np.pi / 5, np.pi) - kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) - else: - kernel2 = random_mixed_kernels( - self.kernel_list2, - self.kernel_prob2, - kernel_size, - self.blur_sigma2, - self.blur_sigma2, [-math.pi, math.pi], - self.betag_range2, - self.betap_range2, - noise_range=None) - - # pad kernel - pad_size = (21 - kernel_size) // 2 - kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) - - # ------------------------------------- the final sinc kernel ------------------------------------- # - if np.random.uniform() < self.opt['final_sinc_prob']: - kernel_size = random.choice(self.kernel_range) - omega_c = np.random.uniform(np.pi / 3, np.pi) - sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21) - sinc_kernel = torch.FloatTensor(sinc_kernel) - else: - sinc_kernel = self.pulse_tensor - - # BGR to RGB, HWC to CHW, numpy to tensor - img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0] - kernel = torch.FloatTensor(kernel) - kernel2 = torch.FloatTensor(kernel2) - - return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path} - return return_d - - def __len__(self): - return len(self.paths) diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Acronis True Image 2020 Bootable ISO Build 20770 The Ultimate Backup Solution.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Acronis True Image 2020 Bootable ISO Build 20770 The Ultimate Backup Solution.md deleted file mode 100644 index 3720780f17dad29daba5e26d7b0fdd40c2c1fc0a..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Acronis True Image 2020 Bootable ISO Build 20770 The Ultimate Backup Solution.md +++ /dev/null @@ -1,47 +0,0 @@ - -

Acronis True Image 2020 Bootable ISO Build 20770: What Is It and Why You Need It

-

If you are looking for a reliable and easy-to-use backup and recovery solution for your Windows or Mac computer, you might have heard of Acronis True Image 2020. This software allows you to create an exact copy of your system, including all your files, applications, settings, and preferences. You can store this copy on an external drive, a cloud service, or a network location, and use it to restore your system in case of a disaster.

-

Acronis True Image 2020 Bootable ISO Build 20770


Download Filehttps://byltly.com/2uKwus



-

But what if your computer does not boot or you have a new computer without any operating system installed on it? How can you access and restore your backup in such situations? This is where Acronis True Image 2020 Bootable ISO Build 20770 comes in handy. This is a standalone version of Acronis True Image that you can use to boot your computer and restore your system from a backup. In this article, we will explain what this software is, how to create it, and how to use it.

-

What is Acronis True Image 2020?

-

Acronis True Image 2020 is a comprehensive backup and recovery software that protects your data from any threat, such as ransomware, hardware failure, natural disaster, human error, or theft. With Acronis True Image 2020, you can:

- -

Features and benefits of Acronis True Image 2020

-

Acronis True Image 2020 offers many features and benefits that make it one of the best backup and recovery solutions on the market. Here are some of them:

- -

What is new in Acronis True Image 2020 Build 20770?

-

Acronis True Image 2020 Build 20770 is the latest update for Acronis True Image 2020 that was released on October 5th, 2019. This update introduces some new features and improvements for the software. Here are some of them:

- -

What is a bootable media and how to create it with Acronis True Image 2020?

-

What is a bootable media and why you need it?

-

A bootable media is a USB flash drive or a CD/DVD with Acronis True Image software on it. This way, you can boot your computer with this media and access the software without installing it on your hard drive. A bootable media is useful in situations where:

-