File size: 28,071 Bytes
fe9c796
 
 
 
 
 
 
 
 
 
dea761a
fe9c796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90387b8
 
fe9c796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea761a
 
 
 
 
 
fe9c796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc705a0
 
 
fe9c796
 
 
 
 
 
bc705a0
 
 
 
 
 
 
fe9c796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc705a0
fe9c796
 
 
 
bc705a0
 
 
 
 
 
 
fe9c796
bc705a0
fe9c796
 
bc705a0
fe9c796
 
bc705a0
fe9c796
 
 
 
 
 
 
 
 
 
bc705a0
 
 
 
 
 
fe9c796
bc705a0
 
fe9c796
bc705a0
 
 
fe9c796
 
bc705a0
fe9c796
 
 
 
 
ef940c3
bc705a0
 
fe9c796
 
 
 
bc705a0
fe9c796
 
 
 
bc705a0
 
 
fe9c796
bc705a0
 
 
 
 
 
 
 
 
 
 
 
fe9c796
bc705a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe9c796
 
 
 
 
bc705a0
 
 
fe9c796
bc705a0
 
 
 
 
 
 
fe9c796
 
 
 
 
 
 
bc705a0
fe9c796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f5654
fe9c796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
import csv
import random
from itertools import combinations
from pathlib import Path
from typing import Any, Dict, List, Union

import datasets
import numpy as np
import pandas as pd


# fmt: off
LANGS = [
    "ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", 
    "aka_Latn", "als_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "arb_Latn", "ars_Arab", 
    "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", 
    "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", 
    "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", 
    "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", 
    "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", 
    "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "fij_Latn", "fin_Latn", 
    "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gaz_Latn", "gla_Latn", "gle_Latn", 
    "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", 
    "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", 
    "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", 
    "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "kaz_Cyrl", "kbp_Latn", "kea_Latn", 
    "khk_Cyrl", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kmr_Latn", 
    "knc_Arab", "knc_Latn", "kon_Latn", "kor_Hang", "lao_Laoo", "lij_Latn", "lim_Latn", 
    "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", 
    "luo_Latn", "lus_Latn", "lvs_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", 
    "min_Arab", "min_Latn", "mkd_Cyrl", "mlt_Latn", "mni_Beng", "mos_Latn", "mri_Latn", 
    "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nqo_Nkoo", "nso_Latn", 
    "nus_Latn", "nya_Latn", "oci_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", 
    "pbt_Arab", "pes_Arab", "plt_Latn", "pol_Latn", "por_Latn", "prs_Arab", "quy_Latn", 
    "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Olck", "scn_Latn", 
    "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", 
    "som_Latn", "sot_Latn", "spa_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", 
    "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "taq_Latn", "taq_Tfng", "tat_Cyrl", 
    "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "tpi_Latn", "tsn_Latn", 
    "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", 
    "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", 
    "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", 
    "zsm_Latn", "zul_Latn"
]
# fmt: on

# For interactive usage:
# Attempt to find the script directory if __file__ is defined, otherwise default to current working directory.
try:
    cwd = Path(__file__).parent
except NameError as _:
    cwd = Path.cwd()

SEED: int = 42
N: int = 1004  # length of pooled train, dev, and test splits
UPSAMPLING_FACTOR: int = 3
NUM_NEGATIVES: int = 3
NUM_REFERENCES: int = 5
NUM_EXAMPLES_PER_OPTION: int = 1

CATEGORIES: List[str] = [
    "entertainment",
    "geography",
    "health",
    "politics",
    "science",
    "sports",
    "travel",
]

# URLs for downloading SIB .tsv data and images.
_SIB_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/sib200/{lang}/{split}.tsv"
_IMG_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/images/sib200/{category}_{no}.jpg"

# Placeholder for dataset description: fill or extend as needed.
_DESCRIPTION: str = (
    "MVLSIB is a multilingual dataset designed to provide sentence-image pairs "
    "spanning multiple languages and categories. The goal is to support tasks such as "
    "multimodal classification, cross-lingual information retrieval, and more. "
    "Each row contains a textual entry (sentence) along with category information, "
    "and the dataset also includes image references for the same set of categories."
)


def read_tsv_to_dict_list(file_path: Union[str, Path]) -> List[Dict[str, Any]]:
    """
    Reads a TSV file with columns 'index_id', 'category', and 'text' into a list of dictionaries.

    The TSV is expected to have the following columns (in order):
        1. index_id
        2. category
        3. text

    Parameters
    ----------
    file_path : Union[str, Path]
        The path to the TSV file.

    Returns
    -------
    List[Dict[str, Any]]
        A list of dictionaries, where each element has keys:
        - 'index_id': int
        - 'category': str
        - 'text': str

    Raises
    ------
    ValueError
        If the TSV headers do not match the expected format.
    """
    data: List[Dict[str, Any]] = []
    expected_headers = ["index_id", "category", "text"]

    with open(file_path, mode="r", encoding="utf-8") as tsvfile:
        reader = csv.DictReader(tsvfile, delimiter="\t")

        # Validate headers
        if reader.fieldnames != expected_headers:
            raise ValueError(
                f"Expected headers {expected_headers}, but got {reader.fieldnames}"
            )

        # Start enumerating from line 2 to account for the header line
        for _, row in enumerate(reader, start=2):
            #
            if all(
                (row[key].strip() == key) or (row[key].strip() == "")
                for key in expected_headers
            ):
                continue
            # Convert index_id to integer
            index_id = int(row["index_id"])
            # Strip leading/trailing whitespace
            category = row["category"].strip()
            text = row["text"].strip()

            # Append the processed row to data
            data.append({"index_id": index_id, "category": category, "text": text})

    return data


def read_lang_tsv(filepaths: List[str]) -> List[Dict[str, Any]]:
    """
    Reads a list of TSV file paths containing SIB data in the same language
    and merges them into a single, sorted list of dictionaries.

    Specifically:
    1. Calls `read_tsv_to_dict_list` for each file path.
    2. Merges all resulting dictionaries.
    3. Sorts by 'index_id'.

    Also normalizes the category "science/technology" to "science" for internal consistency.

    Parameters
    ----------
    filepaths : List[str]
        A list of TSV file paths for a specific language.

    Returns
    -------
    List[Dict[str, Any]]
        A list of dictionaries sorted by 'index_id' with normalized categories.
    """
    # Read each file into a list of dicts
    dicos = [read_tsv_to_dict_list(path) for path in filepaths]
    # Flatten and sort by index_id
    out: List[Dict[str, Any]] = sorted(
        [line for dico in dicos for line in dico], key=lambda row: row["index_id"]
    )
    # Normalize "science/technology" to "science"
    for line in out:
        if line["category"] == "science/technology":
            line["category"] = "science"
    return out


def replicate_and_negatives(
    df: pd.DataFrame,
    num_replicates: int = 3,
    num_negatives: int = 4,
    num_positives: int = 4,
    seed: int = 42,
) -> pd.DataFrame:
    """
    Create multiple replicated rows from the input DataFrame `df` and
    sample negative and positive examples for each row.

    *Negative* samples are drawn from rows whose category is different
    from the row's category. **Additionally, each negative example for
    a given row is drawn from a distinct category among the negatives,
    if there are enough categories to do so without replacement.**

    *Positive* samples are drawn from rows of the same category (excluding
    the row's own 'index_id').

    Parameters
    ----------
    df : pd.DataFrame
        The original input DataFrame with columns ['index_id', 'category', 'text'].
    num_replicates : int, optional
        Number of times to replicate each row, by default 2.
    num_negatives : int, optional
        Number of negative samples to pick for each row, by default 2.
    num_positives : int, optional
        Number of positive samples to pick for each row, by default 2.
    seed : int, optional
        Seed for random operations, by default 42.

    Returns
    -------
    pd.DataFrame
        A new DataFrame containing replicated rows plus columns:
        - neg_id_i, neg_cat_i, neg_text_i for i in [0 .. num_negatives-1]
        - pos_id_i, pos_cat_i, pos_text_i for i in [0 .. num_positives-1]

    Notes
    -----
    - Negative examples for a row are taken from distinct categories
      (other than the row's category) if enough categories exist. If
      fewer categories exist than `num_negatives`, we sample categories
      with replacement, so some duplicates may appear.
    - Positive sampling excludes the row's own 'index_id'.
      If there are fewer available positives than `num_positives`,
      we sample with replacement.
    """

    rng = np.random.default_rng(seed=seed)

    # --- 1) Replicate the DataFrame k (=num_replicates) times ---
    df_new = pd.concat([df] * num_replicates, ignore_index=True)

    # --- 2) Create empty columns for negative and positive samples ---
    for i in range(num_negatives):
        df_new[f"neg_id_{i}"] = None
        df_new[f"neg_cat_{i}"] = None
        df_new[f"neg_text_{i}"] = None

    for i in range(num_positives):
        df_new[f"pos_id_{i}"] = None
        df_new[f"pos_cat_{i}"] = None
        df_new[f"pos_text_{i}"] = None

    # --- Precompute a dictionary of all rows by category (for negatives sampling) ---
    # Key: category -> DataFrame of that category
    unique_cats = df_new["category"].unique()
    cat_to_df: Dict[str, pd.DataFrame] = {}
    for c in unique_cats:
        cat_to_df[c] = df_new[df_new["category"] == c].reset_index(drop=True)

    # --- 4) Build a "positive pool" dictionary by category ---
    # For positive sampling, we exclude the row's own 'index_id' in each row's step
    pos_pool_by_cat = {}
    for c in unique_cats:
        pos_pool_by_cat[c] = df.loc[
            df["category"] == c, ["index_id", "category", "text"]
        ].reset_index(drop=True)

    # --- 5) Group df_new by category and populate negative/positive samples ---
    grouped = df_new.groupby("category", group_keys=False)
    output_chunks: List[pd.DataFrame] = []

    for cat, group_df in grouped:
        g_size = len(group_df)

        # The preallocated arrays for negative and positive columns will be filled for each row individually, i.e., sampling of negative categories and samples will be done per row
        # Prepare arrays for final negative columns
        neg_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
        neg_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
        neg_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]

        # Prepare arrays for final positive columns
        pos_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
        pos_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
        pos_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]

        # For convenience, get all categories *except* the current one (cat)
        # We'll sample from these as negative categories
        negative_candidate_cats = [c for c in unique_cats if c != cat]

        # For each row in the current group
        row_ids_for_group = group_df["index_id"].to_numpy()
        for i_row in range(g_size):
            row_id = row_ids_for_group[i_row]

            # ------------- Negative Sampling -------------
            # 1) Choose distinct categories if possible. If not enough categories
            #    exist to cover num_negatives, we sample categories with replacement.
            replace_for_cats = len(negative_candidate_cats) < num_negatives
            chosen_neg_cats = rng.choice(
                negative_candidate_cats, size=num_negatives, replace=replace_for_cats
            )

            # 2) For each chosen negative category, pick a random row
            for j, neg_cat in enumerate(chosen_neg_cats):
                neg_pool = cat_to_df[neg_cat]
                pick_idx = rng.integers(len(neg_pool))  # random index
                neg_id_cols[j][i_row] = neg_pool["index_id"].iloc[pick_idx]
                neg_cat_cols[j][i_row] = neg_pool["category"].iloc[pick_idx]
                neg_text_cols[j][i_row] = neg_pool["text"].iloc[pick_idx]

            # ------------- Positive Sampling -------------
            pos_pool_cat = pos_pool_by_cat[cat]
            # Exclude the row's own ID in the sampling
            valid_mask = pos_pool_cat["index_id"] != row_id
            valid_pos_pool = pos_pool_cat[valid_mask]
            # If not enough positives remain, sample with replacement
            replace_pos_for_row = len(valid_pos_pool) < num_positives

            if len(valid_pos_pool) == 0:
                # Edge case: if there's literally no other row of the same category,
                # we won't be able to sample. You could decide to fill with NaN
                # or replicate the single example. Here we do the "safe" approach
                # of sampling from the entire cat's pool if possible.
                valid_pos_pool = pos_pool_cat
                replace_pos_for_row = True

            valid_idx_array = valid_pos_pool.index.to_numpy()
            chosen_indices = rng.choice(
                valid_idx_array, size=num_positives, replace=replace_pos_for_row
            )
            for j in range(num_positives):
                pick_idx = chosen_indices[j]
                pos_id_cols[j][i_row] = valid_pos_pool["index_id"].loc[pick_idx]
                pos_cat_cols[j][i_row] = valid_pos_pool["category"].loc[pick_idx]
                pos_text_cols[j][i_row] = valid_pos_pool["text"].loc[pick_idx]

        # Attach negative columns to group_df
        for j in range(num_negatives):
            group_df[f"neg_id_{j}"] = neg_id_cols[j]
            group_df[f"neg_cat_{j}"] = neg_cat_cols[j]
            group_df[f"neg_text_{j}"] = neg_text_cols[j]

        # Attach positive columns to group_df
        for j in range(num_positives):
            group_df[f"pos_id_{j}"] = pos_id_cols[j]
            group_df[f"pos_cat_{j}"] = pos_cat_cols[j]
            group_df[f"pos_text_{j}"] = pos_text_cols[j]

        output_chunks.append(group_df)

    # --- 6) Combine all chunks and restore index order ---
    df_out = pd.concat(output_chunks, axis=0)
    df_out.sort_index(inplace=True)
    return df_out


def get_reference_image_ids(
    N: int, num_images: int, k: int, seed: int
) -> List[List[int]]:
    """
    Generates reference image ID combinations for each row in a dataset of size N.

    We pick (k)-combinations from the range [1 .. num_images-1]. Then we sample
    from these combinations (with replacement) for each of N rows, and shuffle them
    in a reproducible manner.

    Parameters
    ----------
    N : int
        Number of rows in the dataset.
    num_images : int
        Total number of images available per category.
    k : int
        Number of images to select in each combination.
    seed : int
        Global seed for random operations.

    Returns
    -------
    List[List[int]]
        A list of length N, where each element is a list of k unique image IDs.

    Notes
    -----
    - We use Python's `random.choices` to draw from all possible k-combinations.
    - Each combination is then locally shuffled to remove ordering biases.
    """
    all_combinations = list(combinations(range(0, num_images), k))
    random.seed(seed)
    sampled_combinations = [list(x) for x in random.choices(all_combinations, k=N)]

    for i, tuple_ in enumerate(sampled_combinations):
        # Use a unique seed for each shuffle to ensure reproducibility
        random.seed(seed + i)
        random.shuffle(tuple_)
    return sampled_combinations


class MVLSIBConfig(datasets.BuilderConfig):
    """
    Configuration class for the MVLSIB (Multilingual Visual Language SIB) dataset.

    Parameters
    ----------
    name : str
        The configuration name, typically in the format "task.lang".
    upsampling_factor : int, optional
        How many times to replicate each row for additional sampling variety, default: 3.
    num_references : int, optional
        Number of positive references to sample for each row, default: 5.
    num_negatives : int, optional
        Number of negative samples to pair with each row, default: 3.
    seed : int, optional
        Seed for random operations, default: 42.
    """

    def __init__(
        self,
        name: str,
        upsampling_factor: int = UPSAMPLING_FACTOR,
        num_references: int = NUM_REFERENCES,
        num_negatives: int = NUM_NEGATIVES,
        seed: int = SEED,
        **kwargs: Any,
    ):
        super(MVLSIBConfig, self).__init__(**kwargs)
        self.name: str = name
        self.task, self.lang = name.split(".")
        self.upsampling_factor: int = upsampling_factor
        self.num_references: int = num_references
        self.num_negatives: int = num_negatives
        self.seed: int = seed


def _builder_configs() -> List[MVLSIBConfig]:
    """
    Internal helper to build the list of MVLSIBConfig objects
    for all tasks ('img2sent', 'sent2img') and all available languages in LANGS.

    Returns
    -------
    List[MVLSIBConfig]
        A list of dataset configuration objects, each specifying a (task, language) pair.
    """
    configs: List[MVLSIBConfig] = []
    for task in ("img2sent", "sent2img"):
        for lang in LANGS:
            cfg = MVLSIBConfig(
                name=f"{task}.{lang}",
                version=datasets.Version("1.0.0"),
                description=f"MVLSIB: {task}.{lang}",
            )
            configs.append(cfg)
    return configs


class MVLSIB(datasets.GeneratorBasedBuilder):
    """
    MVLSIB is a multilingual dataset that provides matched
    (sentence -> image) or (image -> sentence) examples for
    classification or retrieval tasks.

    Each configuration is specified by a task (img2sent or sent2img)
    and a language code, e.g. 'img2sent.eng_Latn'.

    The dataset is structured such that each row includes:
        - A set of reference items (images or sentences, depending on the task).
        - A set of 4 possible answers (1 positive, 3 negative).
        - A label indicating which of the 4 answers is correct.
    """

    BUILDER_CONFIGS = _builder_configs()
    BUILDER_CONFIG_CLASS = MVLSIBConfig

    def _info(self) -> datasets.DatasetInfo:
        """
        Returns the dataset metadata, including features.

        The dataset has two major tasks:
          - 'img2sent': Given reference images, choose the best matching sentence.
          - 'sent2img': Given reference sentences, choose the best matching image.

        Each example row in 'img2sent' includes:
          - images (list of str URLs to images)
          - sentences (list of str, one positive, three negatives)
          - categories (list of str categories matching each sentence)
          - label (int specifying which of the sentences is correct)
          - id (an integer ID)
          - index_id (the original row ID from the SIB .tsv)

        Each example row in 'sent2img' includes:
          - sentences (list of str, the positive reference sentences)
          - images (list of str URLs to images, one positive, three negatives)
          - categories (list of str categories matching each image)
          - label (int specifying which of the images is correct)
          - id (an integer ID)
          - index_id (the original row ID from the SIB .tsv)

        Returns
        -------
        datasets.DatasetInfo
            The Hugging Face DatasetInfo object describing the dataset features,
            licensing, homepage, citation, etc.
        """
        from datasets import DatasetInfo, Features, Sequence, Value

        img2sents = Features(
            {
                "images": Sequence(Value("string")),
                "sentences": Sequence(Value("string")),
                "categories": Sequence(Value("string")),
                "label": Value("int8"),
                "id": Value("int64"),
                "index_id": Value("int64"),
            }
        )
        sent2imgs = Features(
            {
                "sentences": Sequence(Value("string")),
                "images": Sequence(Value("string")),
                "categories": Sequence(Value("string")),
                "label": Value("int8"),
                "id": Value("int64"),
                "index_id": Value("int64"),
            }
        )

        features = {
            "img2sent": img2sents,
            "sent2img": sent2imgs,
        }

        return DatasetInfo(
            description=_DESCRIPTION,
            features=features[self.config.task],
            supervised_keys=None,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager, *args: Any, **kwargs: Any
    ) -> List[datasets.SplitGenerator]:
        """
        Defines the splits of the dataset. In this case, we only produce a single 'test' split,
        but in principle, you can define train/dev/test or others.

        Parameters
        ----------
        dl_manager : datasets.DownloadManager
            The Hugging Face DownloadManager used to download files.

        Returns
        -------
        List[datasets.SplitGenerator]
            A list of SplitGenerator objects. Each defines a split name
            and a gen_kwargs dict for the `_generate_examples` method.
        """
        # Download SIB tsv files for train, dev, and test
        files = dl_manager.download(
            [
                _SIB_URL.format(lang=self.config.lang, split=split)
                for split in ("train", "dev", "test")
            ]
        )
        # Download images for each category
        images: Dict[str, List[str]] = {}
        for cat in CATEGORIES:
            images[cat] = []
            for i in range(10):
                images[cat].append(
                    dl_manager.download(_IMG_URL.format(category=cat, no=i))
                )

        return [
            datasets.SplitGenerator(
                name="test",
                gen_kwargs={"sib_filepaths": files, "images_filepaths": images},
            ),
        ]

    def _generate_examples(
        self,
        sib_filepaths: List[str],
        images_filepaths: Dict[str, List[str]],
        *args: Any,
        **kwargs: Any,
    ) -> Any:
        """
        Generator function that yields dataset examples in the format needed by
        Hugging Face Datasets.

        Depending on the task (img2sent or sent2img), the function constructs examples where:
        - img2sent: reference images, 4 candidate sentences (1 positive, 3 negative)
        - sent2img: reference sentences, 4 candidate images (1 positive, 3 negative)

        Parameters
        ----------
        sib_filepaths : List[str]
            The downloaded .tsv file paths (train/dev/test) for the specified language.
        images_filepaths : Dict[str, List[str]]
            A dictionary from category -> list of 10 image URLs, as downloaded from `_split_generators`.

        Yields
        ------
        Tuple[int, Dict[str, Any]]
            A tuple where the first element is an integer index,
            and the second is a dictionary matching the features specification
            of the dataset.
        """
        # Read the SIB .tsv files for the given language and combine into a single DataFrame
        records = read_lang_tsv(sib_filepaths)
        df = pd.DataFrame.from_records(records)

        # Expand the dataset with negative and positive samples
        ext_df = replicate_and_negatives(
            df,
            num_replicates=self.config.upsampling_factor,
            num_negatives=self.config.num_negatives,
            # every line already has a positive
            num_positives=self.config.num_references - 1,
            seed=self.config.seed,
        )

        sent_ids = list(range(self.config.num_negatives + 1))
        N = len(ext_df)
        num_images = len(next(iter(images_filepaths.values())))  # e.g., 10 images/cat

        if self.config.task == "img2sent":
            # Pre-generate image ID combinations for each row
            image_ids = get_reference_image_ids(
                N=N,
                num_images=num_images,
                k=self.config.num_references,
                seed=self.config.seed,
            )
            for i, row in ext_df.iterrows():
                # Construct the list of candidate sentences (pos + neg)
                text = [row["text"]]
                categories = [row["category"]]
                for j in range(self.config.num_negatives):
                    text.append(row[f"neg_text_{j}"])
                    categories.append(row[f"neg_cat_{j}"])

                # Shuffle candidate sentences in a reproducible manner
                random.seed(i)
                random.shuffle(sent_ids)
                label = sent_ids[0]

                # Reorder sentences and categories according to the shuffled indices
                _, categories_shuffled = zip(*sorted(zip(sent_ids, categories)))
                _, sentences_shuffled = zip(*sorted(zip(sent_ids, text)))

                # Fetch the reference images for the row
                row_image_ids = image_ids[i]
                cat = row["category"]
                cat_images = images_filepaths[cat]
                row_images = [
                    cat_images[row_image_ids[j]]
                    for j in range(self.config.num_references)
                ]

                yield (
                    i,
                    {
                        "id": i,
                        "index_id": row["index_id"],
                        "images": row_images,
                        "categories": categories_shuffled,
                        "sentences": sentences_shuffled,
                        "label": label,
                    },
                )
        else:
            # sent2img: We first sample image indices (pos + neg) for each row
            rng = np.random.default_rng(seed=self.config.seed)
            choice_image_ids = rng.integers(
                0, num_images, (N, 1 + self.config.num_negatives)
            ).tolist()

            for i, row in ext_df.iterrows():
                # The positive text
                pos_text = [row["text"]]
                # For the negative categories, we gather them similarly
                cats = [row["category"]]
                for j in range(self.config.num_negatives):
                    cats.append(row[f"neg_cat_{j}"])
                for j in range(self.config.num_references - 1):
                    pos_text.append(row[f"pos_text_{j}"])

                random.seed(i)
                random.shuffle(sent_ids)
                label = sent_ids[0]

                # Reorder categories based on the shuffled indices
                # NOTE: positive text is quasi-shuffled already
                _, categories_shuffled = zip(*sorted(zip(sent_ids, cats)))

                # Match the categories to the sampled image indices
                row_image_ids = choice_image_ids[i]
                row_images = [
                    images_filepaths[cat][idx]
                    for idx, cat in zip(row_image_ids, categories_shuffled)
                ]

                yield (
                    i,
                    {
                        "id": i,
                        "index_id": row["index_id"],
                        "images": row_images,
                        "categories": categories_shuffled,
                        "sentences": pos_text,
                        "label": label,
                    },
                )