Datasets:
Tasks:
Image-Text-to-Text
Formats:
csv
Sub-tasks:
topic-classification
Size:
100K - 1M
ArXiv:
License:
File size: 28,071 Bytes
fe9c796 dea761a fe9c796 90387b8 fe9c796 dea761a fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 ef940c3 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 bc705a0 fe9c796 a1f5654 fe9c796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 |
import csv
import random
from itertools import combinations
from pathlib import Path
from typing import Any, Dict, List, Union
import datasets
import numpy as np
import pandas as pd
# fmt: off
LANGS = [
"ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab",
"aka_Latn", "als_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "arb_Latn", "ars_Arab",
"ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab",
"azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng",
"bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl",
"cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn",
"dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn",
"epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "fij_Latn", "fin_Latn",
"fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gaz_Latn", "gla_Latn", "gle_Latn",
"glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva",
"hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn",
"isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn",
"kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "kaz_Cyrl", "kbp_Latn", "kea_Latn",
"khk_Cyrl", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kmr_Latn",
"knc_Arab", "knc_Latn", "kon_Latn", "kor_Hang", "lao_Laoo", "lij_Latn", "lim_Latn",
"lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn",
"luo_Latn", "lus_Latn", "lvs_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva",
"min_Arab", "min_Latn", "mkd_Cyrl", "mlt_Latn", "mni_Beng", "mos_Latn", "mri_Latn",
"mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nqo_Nkoo", "nso_Latn",
"nus_Latn", "nya_Latn", "oci_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn",
"pbt_Arab", "pes_Arab", "plt_Latn", "pol_Latn", "por_Latn", "prs_Arab", "quy_Latn",
"ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Olck", "scn_Latn",
"shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab",
"som_Latn", "sot_Latn", "spa_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn",
"swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "taq_Latn", "taq_Tfng", "tat_Cyrl",
"tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "tpi_Latn", "tsn_Latn",
"tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab",
"ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn",
"wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant",
"zsm_Latn", "zul_Latn"
]
# fmt: on
# For interactive usage:
# Attempt to find the script directory if __file__ is defined, otherwise default to current working directory.
try:
cwd = Path(__file__).parent
except NameError as _:
cwd = Path.cwd()
SEED: int = 42
N: int = 1004 # length of pooled train, dev, and test splits
UPSAMPLING_FACTOR: int = 3
NUM_NEGATIVES: int = 3
NUM_REFERENCES: int = 5
NUM_EXAMPLES_PER_OPTION: int = 1
CATEGORIES: List[str] = [
"entertainment",
"geography",
"health",
"politics",
"science",
"sports",
"travel",
]
# URLs for downloading SIB .tsv data and images.
_SIB_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/sib200/{lang}/{split}.tsv"
_IMG_URL: str = "https://huggingface.co/datasets/wuenlp/mvl-sib200/resolve/main/data/images/sib200/{category}_{no}.jpg"
# Placeholder for dataset description: fill or extend as needed.
_DESCRIPTION: str = (
"MVLSIB is a multilingual dataset designed to provide sentence-image pairs "
"spanning multiple languages and categories. The goal is to support tasks such as "
"multimodal classification, cross-lingual information retrieval, and more. "
"Each row contains a textual entry (sentence) along with category information, "
"and the dataset also includes image references for the same set of categories."
)
def read_tsv_to_dict_list(file_path: Union[str, Path]) -> List[Dict[str, Any]]:
"""
Reads a TSV file with columns 'index_id', 'category', and 'text' into a list of dictionaries.
The TSV is expected to have the following columns (in order):
1. index_id
2. category
3. text
Parameters
----------
file_path : Union[str, Path]
The path to the TSV file.
Returns
-------
List[Dict[str, Any]]
A list of dictionaries, where each element has keys:
- 'index_id': int
- 'category': str
- 'text': str
Raises
------
ValueError
If the TSV headers do not match the expected format.
"""
data: List[Dict[str, Any]] = []
expected_headers = ["index_id", "category", "text"]
with open(file_path, mode="r", encoding="utf-8") as tsvfile:
reader = csv.DictReader(tsvfile, delimiter="\t")
# Validate headers
if reader.fieldnames != expected_headers:
raise ValueError(
f"Expected headers {expected_headers}, but got {reader.fieldnames}"
)
# Start enumerating from line 2 to account for the header line
for _, row in enumerate(reader, start=2):
#
if all(
(row[key].strip() == key) or (row[key].strip() == "")
for key in expected_headers
):
continue
# Convert index_id to integer
index_id = int(row["index_id"])
# Strip leading/trailing whitespace
category = row["category"].strip()
text = row["text"].strip()
# Append the processed row to data
data.append({"index_id": index_id, "category": category, "text": text})
return data
def read_lang_tsv(filepaths: List[str]) -> List[Dict[str, Any]]:
"""
Reads a list of TSV file paths containing SIB data in the same language
and merges them into a single, sorted list of dictionaries.
Specifically:
1. Calls `read_tsv_to_dict_list` for each file path.
2. Merges all resulting dictionaries.
3. Sorts by 'index_id'.
Also normalizes the category "science/technology" to "science" for internal consistency.
Parameters
----------
filepaths : List[str]
A list of TSV file paths for a specific language.
Returns
-------
List[Dict[str, Any]]
A list of dictionaries sorted by 'index_id' with normalized categories.
"""
# Read each file into a list of dicts
dicos = [read_tsv_to_dict_list(path) for path in filepaths]
# Flatten and sort by index_id
out: List[Dict[str, Any]] = sorted(
[line for dico in dicos for line in dico], key=lambda row: row["index_id"]
)
# Normalize "science/technology" to "science"
for line in out:
if line["category"] == "science/technology":
line["category"] = "science"
return out
def replicate_and_negatives(
df: pd.DataFrame,
num_replicates: int = 3,
num_negatives: int = 4,
num_positives: int = 4,
seed: int = 42,
) -> pd.DataFrame:
"""
Create multiple replicated rows from the input DataFrame `df` and
sample negative and positive examples for each row.
*Negative* samples are drawn from rows whose category is different
from the row's category. **Additionally, each negative example for
a given row is drawn from a distinct category among the negatives,
if there are enough categories to do so without replacement.**
*Positive* samples are drawn from rows of the same category (excluding
the row's own 'index_id').
Parameters
----------
df : pd.DataFrame
The original input DataFrame with columns ['index_id', 'category', 'text'].
num_replicates : int, optional
Number of times to replicate each row, by default 2.
num_negatives : int, optional
Number of negative samples to pick for each row, by default 2.
num_positives : int, optional
Number of positive samples to pick for each row, by default 2.
seed : int, optional
Seed for random operations, by default 42.
Returns
-------
pd.DataFrame
A new DataFrame containing replicated rows plus columns:
- neg_id_i, neg_cat_i, neg_text_i for i in [0 .. num_negatives-1]
- pos_id_i, pos_cat_i, pos_text_i for i in [0 .. num_positives-1]
Notes
-----
- Negative examples for a row are taken from distinct categories
(other than the row's category) if enough categories exist. If
fewer categories exist than `num_negatives`, we sample categories
with replacement, so some duplicates may appear.
- Positive sampling excludes the row's own 'index_id'.
If there are fewer available positives than `num_positives`,
we sample with replacement.
"""
rng = np.random.default_rng(seed=seed)
# --- 1) Replicate the DataFrame k (=num_replicates) times ---
df_new = pd.concat([df] * num_replicates, ignore_index=True)
# --- 2) Create empty columns for negative and positive samples ---
for i in range(num_negatives):
df_new[f"neg_id_{i}"] = None
df_new[f"neg_cat_{i}"] = None
df_new[f"neg_text_{i}"] = None
for i in range(num_positives):
df_new[f"pos_id_{i}"] = None
df_new[f"pos_cat_{i}"] = None
df_new[f"pos_text_{i}"] = None
# --- Precompute a dictionary of all rows by category (for negatives sampling) ---
# Key: category -> DataFrame of that category
unique_cats = df_new["category"].unique()
cat_to_df: Dict[str, pd.DataFrame] = {}
for c in unique_cats:
cat_to_df[c] = df_new[df_new["category"] == c].reset_index(drop=True)
# --- 4) Build a "positive pool" dictionary by category ---
# For positive sampling, we exclude the row's own 'index_id' in each row's step
pos_pool_by_cat = {}
for c in unique_cats:
pos_pool_by_cat[c] = df.loc[
df["category"] == c, ["index_id", "category", "text"]
].reset_index(drop=True)
# --- 5) Group df_new by category and populate negative/positive samples ---
grouped = df_new.groupby("category", group_keys=False)
output_chunks: List[pd.DataFrame] = []
for cat, group_df in grouped:
g_size = len(group_df)
# The preallocated arrays for negative and positive columns will be filled for each row individually, i.e., sampling of negative categories and samples will be done per row
# Prepare arrays for final negative columns
neg_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
neg_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
neg_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_negatives)]
# Prepare arrays for final positive columns
pos_id_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
pos_cat_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
pos_text_cols = [np.empty(g_size, dtype=object) for _ in range(num_positives)]
# For convenience, get all categories *except* the current one (cat)
# We'll sample from these as negative categories
negative_candidate_cats = [c for c in unique_cats if c != cat]
# For each row in the current group
row_ids_for_group = group_df["index_id"].to_numpy()
for i_row in range(g_size):
row_id = row_ids_for_group[i_row]
# ------------- Negative Sampling -------------
# 1) Choose distinct categories if possible. If not enough categories
# exist to cover num_negatives, we sample categories with replacement.
replace_for_cats = len(negative_candidate_cats) < num_negatives
chosen_neg_cats = rng.choice(
negative_candidate_cats, size=num_negatives, replace=replace_for_cats
)
# 2) For each chosen negative category, pick a random row
for j, neg_cat in enumerate(chosen_neg_cats):
neg_pool = cat_to_df[neg_cat]
pick_idx = rng.integers(len(neg_pool)) # random index
neg_id_cols[j][i_row] = neg_pool["index_id"].iloc[pick_idx]
neg_cat_cols[j][i_row] = neg_pool["category"].iloc[pick_idx]
neg_text_cols[j][i_row] = neg_pool["text"].iloc[pick_idx]
# ------------- Positive Sampling -------------
pos_pool_cat = pos_pool_by_cat[cat]
# Exclude the row's own ID in the sampling
valid_mask = pos_pool_cat["index_id"] != row_id
valid_pos_pool = pos_pool_cat[valid_mask]
# If not enough positives remain, sample with replacement
replace_pos_for_row = len(valid_pos_pool) < num_positives
if len(valid_pos_pool) == 0:
# Edge case: if there's literally no other row of the same category,
# we won't be able to sample. You could decide to fill with NaN
# or replicate the single example. Here we do the "safe" approach
# of sampling from the entire cat's pool if possible.
valid_pos_pool = pos_pool_cat
replace_pos_for_row = True
valid_idx_array = valid_pos_pool.index.to_numpy()
chosen_indices = rng.choice(
valid_idx_array, size=num_positives, replace=replace_pos_for_row
)
for j in range(num_positives):
pick_idx = chosen_indices[j]
pos_id_cols[j][i_row] = valid_pos_pool["index_id"].loc[pick_idx]
pos_cat_cols[j][i_row] = valid_pos_pool["category"].loc[pick_idx]
pos_text_cols[j][i_row] = valid_pos_pool["text"].loc[pick_idx]
# Attach negative columns to group_df
for j in range(num_negatives):
group_df[f"neg_id_{j}"] = neg_id_cols[j]
group_df[f"neg_cat_{j}"] = neg_cat_cols[j]
group_df[f"neg_text_{j}"] = neg_text_cols[j]
# Attach positive columns to group_df
for j in range(num_positives):
group_df[f"pos_id_{j}"] = pos_id_cols[j]
group_df[f"pos_cat_{j}"] = pos_cat_cols[j]
group_df[f"pos_text_{j}"] = pos_text_cols[j]
output_chunks.append(group_df)
# --- 6) Combine all chunks and restore index order ---
df_out = pd.concat(output_chunks, axis=0)
df_out.sort_index(inplace=True)
return df_out
def get_reference_image_ids(
N: int, num_images: int, k: int, seed: int
) -> List[List[int]]:
"""
Generates reference image ID combinations for each row in a dataset of size N.
We pick (k)-combinations from the range [1 .. num_images-1]. Then we sample
from these combinations (with replacement) for each of N rows, and shuffle them
in a reproducible manner.
Parameters
----------
N : int
Number of rows in the dataset.
num_images : int
Total number of images available per category.
k : int
Number of images to select in each combination.
seed : int
Global seed for random operations.
Returns
-------
List[List[int]]
A list of length N, where each element is a list of k unique image IDs.
Notes
-----
- We use Python's `random.choices` to draw from all possible k-combinations.
- Each combination is then locally shuffled to remove ordering biases.
"""
all_combinations = list(combinations(range(0, num_images), k))
random.seed(seed)
sampled_combinations = [list(x) for x in random.choices(all_combinations, k=N)]
for i, tuple_ in enumerate(sampled_combinations):
# Use a unique seed for each shuffle to ensure reproducibility
random.seed(seed + i)
random.shuffle(tuple_)
return sampled_combinations
class MVLSIBConfig(datasets.BuilderConfig):
"""
Configuration class for the MVLSIB (Multilingual Visual Language SIB) dataset.
Parameters
----------
name : str
The configuration name, typically in the format "task.lang".
upsampling_factor : int, optional
How many times to replicate each row for additional sampling variety, default: 3.
num_references : int, optional
Number of positive references to sample for each row, default: 5.
num_negatives : int, optional
Number of negative samples to pair with each row, default: 3.
seed : int, optional
Seed for random operations, default: 42.
"""
def __init__(
self,
name: str,
upsampling_factor: int = UPSAMPLING_FACTOR,
num_references: int = NUM_REFERENCES,
num_negatives: int = NUM_NEGATIVES,
seed: int = SEED,
**kwargs: Any,
):
super(MVLSIBConfig, self).__init__(**kwargs)
self.name: str = name
self.task, self.lang = name.split(".")
self.upsampling_factor: int = upsampling_factor
self.num_references: int = num_references
self.num_negatives: int = num_negatives
self.seed: int = seed
def _builder_configs() -> List[MVLSIBConfig]:
"""
Internal helper to build the list of MVLSIBConfig objects
for all tasks ('img2sent', 'sent2img') and all available languages in LANGS.
Returns
-------
List[MVLSIBConfig]
A list of dataset configuration objects, each specifying a (task, language) pair.
"""
configs: List[MVLSIBConfig] = []
for task in ("img2sent", "sent2img"):
for lang in LANGS:
cfg = MVLSIBConfig(
name=f"{task}.{lang}",
version=datasets.Version("1.0.0"),
description=f"MVLSIB: {task}.{lang}",
)
configs.append(cfg)
return configs
class MVLSIB(datasets.GeneratorBasedBuilder):
"""
MVLSIB is a multilingual dataset that provides matched
(sentence -> image) or (image -> sentence) examples for
classification or retrieval tasks.
Each configuration is specified by a task (img2sent or sent2img)
and a language code, e.g. 'img2sent.eng_Latn'.
The dataset is structured such that each row includes:
- A set of reference items (images or sentences, depending on the task).
- A set of 4 possible answers (1 positive, 3 negative).
- A label indicating which of the 4 answers is correct.
"""
BUILDER_CONFIGS = _builder_configs()
BUILDER_CONFIG_CLASS = MVLSIBConfig
def _info(self) -> datasets.DatasetInfo:
"""
Returns the dataset metadata, including features.
The dataset has two major tasks:
- 'img2sent': Given reference images, choose the best matching sentence.
- 'sent2img': Given reference sentences, choose the best matching image.
Each example row in 'img2sent' includes:
- images (list of str URLs to images)
- sentences (list of str, one positive, three negatives)
- categories (list of str categories matching each sentence)
- label (int specifying which of the sentences is correct)
- id (an integer ID)
- index_id (the original row ID from the SIB .tsv)
Each example row in 'sent2img' includes:
- sentences (list of str, the positive reference sentences)
- images (list of str URLs to images, one positive, three negatives)
- categories (list of str categories matching each image)
- label (int specifying which of the images is correct)
- id (an integer ID)
- index_id (the original row ID from the SIB .tsv)
Returns
-------
datasets.DatasetInfo
The Hugging Face DatasetInfo object describing the dataset features,
licensing, homepage, citation, etc.
"""
from datasets import DatasetInfo, Features, Sequence, Value
img2sents = Features(
{
"images": Sequence(Value("string")),
"sentences": Sequence(Value("string")),
"categories": Sequence(Value("string")),
"label": Value("int8"),
"id": Value("int64"),
"index_id": Value("int64"),
}
)
sent2imgs = Features(
{
"sentences": Sequence(Value("string")),
"images": Sequence(Value("string")),
"categories": Sequence(Value("string")),
"label": Value("int8"),
"id": Value("int64"),
"index_id": Value("int64"),
}
)
features = {
"img2sent": img2sents,
"sent2img": sent2imgs,
}
return DatasetInfo(
description=_DESCRIPTION,
features=features[self.config.task],
supervised_keys=None,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager, *args: Any, **kwargs: Any
) -> List[datasets.SplitGenerator]:
"""
Defines the splits of the dataset. In this case, we only produce a single 'test' split,
but in principle, you can define train/dev/test or others.
Parameters
----------
dl_manager : datasets.DownloadManager
The Hugging Face DownloadManager used to download files.
Returns
-------
List[datasets.SplitGenerator]
A list of SplitGenerator objects. Each defines a split name
and a gen_kwargs dict for the `_generate_examples` method.
"""
# Download SIB tsv files for train, dev, and test
files = dl_manager.download(
[
_SIB_URL.format(lang=self.config.lang, split=split)
for split in ("train", "dev", "test")
]
)
# Download images for each category
images: Dict[str, List[str]] = {}
for cat in CATEGORIES:
images[cat] = []
for i in range(10):
images[cat].append(
dl_manager.download(_IMG_URL.format(category=cat, no=i))
)
return [
datasets.SplitGenerator(
name="test",
gen_kwargs={"sib_filepaths": files, "images_filepaths": images},
),
]
def _generate_examples(
self,
sib_filepaths: List[str],
images_filepaths: Dict[str, List[str]],
*args: Any,
**kwargs: Any,
) -> Any:
"""
Generator function that yields dataset examples in the format needed by
Hugging Face Datasets.
Depending on the task (img2sent or sent2img), the function constructs examples where:
- img2sent: reference images, 4 candidate sentences (1 positive, 3 negative)
- sent2img: reference sentences, 4 candidate images (1 positive, 3 negative)
Parameters
----------
sib_filepaths : List[str]
The downloaded .tsv file paths (train/dev/test) for the specified language.
images_filepaths : Dict[str, List[str]]
A dictionary from category -> list of 10 image URLs, as downloaded from `_split_generators`.
Yields
------
Tuple[int, Dict[str, Any]]
A tuple where the first element is an integer index,
and the second is a dictionary matching the features specification
of the dataset.
"""
# Read the SIB .tsv files for the given language and combine into a single DataFrame
records = read_lang_tsv(sib_filepaths)
df = pd.DataFrame.from_records(records)
# Expand the dataset with negative and positive samples
ext_df = replicate_and_negatives(
df,
num_replicates=self.config.upsampling_factor,
num_negatives=self.config.num_negatives,
# every line already has a positive
num_positives=self.config.num_references - 1,
seed=self.config.seed,
)
sent_ids = list(range(self.config.num_negatives + 1))
N = len(ext_df)
num_images = len(next(iter(images_filepaths.values()))) # e.g., 10 images/cat
if self.config.task == "img2sent":
# Pre-generate image ID combinations for each row
image_ids = get_reference_image_ids(
N=N,
num_images=num_images,
k=self.config.num_references,
seed=self.config.seed,
)
for i, row in ext_df.iterrows():
# Construct the list of candidate sentences (pos + neg)
text = [row["text"]]
categories = [row["category"]]
for j in range(self.config.num_negatives):
text.append(row[f"neg_text_{j}"])
categories.append(row[f"neg_cat_{j}"])
# Shuffle candidate sentences in a reproducible manner
random.seed(i)
random.shuffle(sent_ids)
label = sent_ids[0]
# Reorder sentences and categories according to the shuffled indices
_, categories_shuffled = zip(*sorted(zip(sent_ids, categories)))
_, sentences_shuffled = zip(*sorted(zip(sent_ids, text)))
# Fetch the reference images for the row
row_image_ids = image_ids[i]
cat = row["category"]
cat_images = images_filepaths[cat]
row_images = [
cat_images[row_image_ids[j]]
for j in range(self.config.num_references)
]
yield (
i,
{
"id": i,
"index_id": row["index_id"],
"images": row_images,
"categories": categories_shuffled,
"sentences": sentences_shuffled,
"label": label,
},
)
else:
# sent2img: We first sample image indices (pos + neg) for each row
rng = np.random.default_rng(seed=self.config.seed)
choice_image_ids = rng.integers(
0, num_images, (N, 1 + self.config.num_negatives)
).tolist()
for i, row in ext_df.iterrows():
# The positive text
pos_text = [row["text"]]
# For the negative categories, we gather them similarly
cats = [row["category"]]
for j in range(self.config.num_negatives):
cats.append(row[f"neg_cat_{j}"])
for j in range(self.config.num_references - 1):
pos_text.append(row[f"pos_text_{j}"])
random.seed(i)
random.shuffle(sent_ids)
label = sent_ids[0]
# Reorder categories based on the shuffled indices
# NOTE: positive text is quasi-shuffled already
_, categories_shuffled = zip(*sorted(zip(sent_ids, cats)))
# Match the categories to the sampled image indices
row_image_ids = choice_image_ids[i]
row_images = [
images_filepaths[cat][idx]
for idx, cat in zip(row_image_ids, categories_shuffled)
]
yield (
i,
{
"id": i,
"index_id": row["index_id"],
"images": row_images,
"categories": categories_shuffled,
"sentences": pos_text,
"label": label,
},
)
|