MDS / make_summarization_csv.py
ZhuofengLi's picture
Create make_summarization_csv.py
d690744 verified
raw
history blame
4.38 kB
import re
import os
import logging
import pickle
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
def make_summarization_csv(args):
if args.for_qfid:
logging.info('Making csv files for QFiD...')
logging.info('Columns={"reference": literature review title <s> chapter title </s> literature review title <s> chapter title <s> abstract of cited paper 1 <s> BIB001 </s> literature review title <s> chapter title <s> abstract of cited paper 2 <s> BIB002 </s> ..., "target": literature review chapter}')
else:
logging.info('Making csv files for summarization...')
logging.info('Columns={"reference": literature review title <s> chapter title <s> abstract of cited paper 1 <s> BIB001 </s> literature review title <s> chapter title <s> abstract of cited paper 2 <s> BIB002 </s> ..., "target": literature review chapter}')
section_df = pd.read_pickle(os.path.join(args.dataset_path, 'split_survey_df.pkl'))
dataset_df = section_df[section_df['n_bibs'].apply(lambda n_bibs: n_bibs >= 2)]
dataset_df = dataset_df.rename(columns={'text': 'target'})
dataset_df = dataset_df.rename(columns={'bib_cinting_sentences': 'bib_citing_sentences'})
dataset_df['reference'] = dataset_df[['bib_abstracts', 'section', 'title']].apply(lambda bib_abstracts: ' '.join(['</s> {} <s> {} <s> {} <s> BIB{}'.format(bib_abstracts[2], bib_abstracts[1], abstract, bib) for bib, abstract in bib_abstracts[0].items()]), axis=1)
if args.for_qfid:
dataset_df['reference'] = dataset_df['title'] + ' <s> ' + dataset_df['section'] + ' ' + dataset_df['reference']
else:
dataset_df['reference'] = dataset_df['reference'].apply(lambda s: s[5:])
split_df = dataset_df['split']
dataset_df = dataset_df[['reference', 'target']]
train_df = dataset_df[split_df == 'train']
val_df = dataset_df[split_df == 'val']
test_df = dataset_df[split_df == 'test']
if args.for_qfid:
train_df.to_csv(os.path.join(args.dataset_path, 'train_qfid.csv'), index=False)
val_df.to_csv(os.path.join(args.dataset_path, 'val_qfid.csv'), index=False)
test_df.to_csv(os.path.join(args.dataset_path, 'test_qfid.csv'), index=False)
else:
train_df.to_csv(os.path.join(args.dataset_path, 'train.csv'), index=False)
val_df.to_csv(os.path.join(args.dataset_path, 'val.csv'), index=False)
test_df.to_csv(os.path.join(args.dataset_path, 'test.csv'), index=False)
logging.info('Done!')
def anonymize_bib(args):
logging.info('Converting BIB identifiers...')
for split in ['val', 'test', 'train']:
if args.for_qfid:
df = pd.read_csv(os.path.join(args.dataset_path, '{}_qfid.csv'.format(split)))
else:
df = pd.read_csv(os.path.join(args.dataset_path, '{}.csv'.format(split)))
bar = tqdm(total=len(df))
for row in df.itertuples():
cnt = 1
bib_dict = {}
for i in range(len(row.reference)):
if row.reference[i:i+7] == '<s> BIB':
bib_dict[row.reference[i+7:].split(' ')[0]] = cnt
cnt += 1
ref = row.reference
tgt = row.target
for key, value in bib_dict.items():
ref = re.sub('BIB{}'.format(key), 'BIB{:0>3}'.format(value), ref)
tgt = re.sub('BIB{}'.format(key), 'BIB{:0>3}'.format(value), tgt)
df.at[row.Index, 'reference'] = ref
df.at[row.Index, 'target'] = tgt
bar.update(1)
logging.info('Saving...')
if args.for_qfid:
df.to_csv(os.path.join(args.dataset_path, '{}_qfid.csv'.format(split)), index=False)
else:
df.to_csv(os.path.join(args.dataset_path, '{}.csv'.format(split)), index=False)
if __name__ == '__main__':
logging.basicConfig(format='%(message)s', level=logging.DEBUG)
parser = argparse.ArgumentParser(description='')
parser.add_argument('-dataset_path', default=".", help='Path to the generated dataset')
parser.add_argument('--for_qfid', action='store_true', help='Add if you train QFiD on the generated csv files')
args = parser.parse_args()
make_summarization_csv(args) # Convert split_survey_df into csv files suitable for summarization
anonymize_bib(args) # Converting BIB{paper_id} into BIB{001, 002, ...}