File size: 16,304 Bytes
0e490a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "2b881572b62f8ce1",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-10-09T13:27:12.237540800Z",
     "start_time": "2024-10-09T13:26:27.495918500Z"
    },
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "import json\n",
    "path = \"Movies_and_TV_5.json\"\n",
    "dict_edge = {} #example: 8842281e1d1347389f2ab93d60773d4d|23310161 : One of my favorite books.\n",
    "dict_num_to_id = {} # reorder the node's id\n",
    "edge_score = []\n",
    "count = 0\n",
    "review_text = \"Reviewer [reviewerName] left a review on [reviewTime], giving the product [rating] stars. In his/her review, he/she wrote: [reviewText]. His/Her summary was [summary].\"\n",
    "with open(path) as f:\n",
    "    for line in f:\n",
    "        d = json.loads(line)\n",
    "        edge = d[\"reviewerID\"] + \"|\" + d[\"asin\"]\n",
    "        try:\n",
    "            reviewtext = review_text.replace(\"[reviewerName]\", d[\"reviewerName\"])\n",
    "        except:\n",
    "            reviewtext = review_text.replace(\"[reviewerName]\", \"\")\n",
    "        if d[\"reviewTime\"] == \"\":\n",
    "            reviewtext = reviewtext.replace(\"[reviewTime]\", \"Unknown reviewtime\")\n",
    "        else:\n",
    "            reviewtext = reviewtext.replace(\"[reviewTime]\", d[\"reviewTime\"])\n",
    "        if d[\"overall\"] == \"\":\n",
    "            reviewtext = reviewtext.replace(\"[rating]\", \"Unknown\")\n",
    "        else:\n",
    "            reviewtext = reviewtext.replace(\"[rating]\", str(d[\"overall\"]))\n",
    "        reviewtext = reviewtext.replace(\"[reviewText]\", d[\"reviewText\"])\n",
    "        if d[\"summary\"] == \"\":\n",
    "            reviewtext = reviewtext.replace(\"[summary]\", \"Unknown\")\n",
    "        else:\n",
    "            reviewtext = reviewtext.replace(\"[summary]\", d[\"summary\"])\n",
    "        dict_edge[edge] = reviewtext\n",
    "        edge_score.append(d[\"overall\"])\n",
    "        if d[\"reviewerID\"] not in dict_num_to_id:  # user node \n",
    "            dict_num_to_id[d[\"reviewerID\"]] = count\n",
    "            count += 1\n",
    "        if d[\"asin\"] not in dict_num_to_id:  # goods node\n",
    "            dict_num_to_id[d[\"asin\"]] = count\n",
    "            count += 1\n",
    "            "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "acb9e595af870544",
   "metadata": {
    "ExecuteTime": {
     "start_time": "2024-10-09T13:27:12.279999300Z"
    },
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [],
   "source": [
    "import json\n",
    "dict_id_to_text = {}\n",
    "dictid_to_label = {}\n",
    "nodes_texts = \"The product titled '[title]'. It features [feature] and is about [description], making it an excellent choice for [fit]. This product is priced at [price] and comes from the brand [brand]. It ranks [rank] and was released on [date].\"\n",
    "# nodes_texts = \"The product titled '[title]' falls under the Movies & TV category. It features [feature] and is about [description], making it a great fit for [fit]. This product is sold for [price] and is from the brand [brand]. This product has a rank of [rank] and was released on [date]. For more details, check out the [imageURL] or the high-resolution image [imageURLHighRes].\"\n",
    "with open(\"meta_Movies_and_TV.json\") as f:\n",
    "    for line in f:\n",
    "        d = json.loads(line)\n",
    "        label_list = []\n",
    "        for x in d[\"category\"]:\n",
    "            label_list.append(x)\n",
    "        dictid_to_label[d[\"asin\"]] = label_list\n",
    "        product_text = nodes_texts.replace(\"[title]\", d[\"title\"])\n",
    "        category_text = \", \".join(label_list[1:])\n",
    "        product_text = product_text.replace(\"[category]\", category_text)\n",
    "        if d[\"feature\"] == []:\n",
    "            product_text = product_text.replace(\"[feature]\",\"Unknown feature\")\n",
    "        else:\n",
    "            feature_text = \", \".join(d[\"feature\"])\n",
    "            product_text = product_text.replace(\"[feature]\",feature_text)\n",
    "        if d[\"description\"] == []:\n",
    "            product_text = product_text.replace(\"[description]\",\"Unknown description\")\n",
    "        else:\n",
    "            description_text = \", \".join(d[\"description\"])\n",
    "            product_text = product_text.replace(\"[description]\",description_text)\n",
    "        if d[\"fit\"] == \"\":\n",
    "            product_text = product_text.replace(\"[fit]\",\"Unknown fit\")\n",
    "        else:\n",
    "            product_text = product_text.replace(\"[fit]\",d[\"fit\"])\n",
    "        if d[\"price\"] == \"\" or d[\"price\"][0] != \"$\":\n",
    "            product_text = product_text.replace(\"[price]\",\"Unknown price\")\n",
    "        else:\n",
    "            product_text = product_text.replace(\"[price]\",d[\"price\"])\n",
    "        if d[\"brand\"] == \"\":\n",
    "            product_text = product_text.replace(\"[brand]\",\"Unknown brand\")\n",
    "        else:\n",
    "            product_text = product_text.replace(\"[brand]\",d[\"brand\"])\n",
    "        if d[\"rank\"] == \"\":\n",
    "            product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n",
    "        else:\n",
    "            try:\n",
    "                product_text = product_text.replace(\"[rank]\",d[\"rank\"])\n",
    "                product_text = product_text.replace(\"in Movies & TV (\",\"\")\n",
    "            except:\n",
    "                product_text = product_text.replace(\"[rank]\",\"Unknown rank\")\n",
    "        if d[\"date\"] == \"\":\n",
    "            product_text = product_text.replace(\"[date]\",\"Unknown date\")\n",
    "        else:\n",
    "            product_text = product_text.replace(\"[date]\",d[\"date\"])\n",
    "        if d[\"imageURL\"] == []:\n",
    "            product_text = product_text.replace(\"[imageURL]\",\"Unknown imageURL\")\n",
    "        else:\n",
    "            imageURL_text = \", \".join(d[\"imageURL\"])\n",
    "            product_text = product_text.replace(\"[imageURL]\",imageURL_text)\n",
    "        if d[\"imageURLHighRes\"] == []:\n",
    "            product_text = product_text.replace(\"[imageURLHighRes]\",\"Unknown imageURLHighRes\")\n",
    "        else:\n",
    "            imageURLHighRes_text = \", \".join(d[\"imageURLHighRes\"])\n",
    "            product_text = product_text.replace(\"[imageURLHighRes]\",imageURLHighRes_text)\n",
    "        dict_id_to_text[d[\"asin\"]] = product_text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "5e69e274cb42bf36",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [],
   "source": [
    "edge1 = [] \n",
    "edge2 = []  # edge1 edge2 are to generate edge_index\n",
    "text_nodes = [None] * len(dict_num_to_id)\n",
    "text_edges = []\n",
    "text_node_labels = [-1] * len(dict_num_to_id)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "388c334a",
   "metadata": {},
   "outputs": [],
   "source": [
    "\"The product titled 'An American Christmas Carol VHS'. It features Unknown feature and is about In Depression-era New England, a miserly businessman named Benedict Slade receives a long-overdue attitude adjustment one Christmas eve when he is visited by three ghostly figures who resemble three of the people whose possessions Slade had seized to collect on unpaid loans. Assuming the roles of the Ghosts of Christmas Past, Present, and Future from Charles Dickens' classic story, the three apparitions force Slade to face the consequences of his skinflint ways, and he becomes a caring, generous, amiable man., making it an excellent choice for Unknown fit. This product is priced at .a-box-inner{background-color:#fff}#alohaBuyBoxWidget .selected{background-color:#fffbf3;border-color:#e77600;box-shadow:0 0 3px rgba(228,121,17,.5)}#alohaBuyBoxWidget .contract-not-available{color:gray}#aloha-cart-popover .aloha-cart{height:auto;overflow:hidden}#aloha-cart-popover #aloha-cartInfo{float:left}#aloha-cart-popover #aloha-cart-details{float:right;margin-top:1em}#aloha-cart-popover .deviceContainer{width:160px;float:left;padding-right:10px;border-right:1px solid #ddd}#aloha-cart-popover li:last-child{border-right:0}#aloha-cart-popover .aloha-device-title{height:3em;overflow:hidden}#aloha-cart-popover .aloha-thumbnail-container{height:100px;margin-bottom:1em;text-align:center}#aloha-cart-popover .aloha-price-container{text-align:center}#aloha-cart-popover .aloha-thumbnail-container img{height:inherit}#aloha-cart-popover .aloha-cart{border-top:1px solid #ddd;border-bottom:1px solid #ddd}#aloha-cart-popover #aloha-cart-info{margin-right:0}#alohaBuyBoxWidget .without-contract-subheading{margin-right:0}#aloha-bb-help-nodes .aloha-bb-contract-term-heading{color:gray;font-family:arial;margin-top:.5em;text-align:center;height:.7em;border-bottom:1px solid gray;margin-bottom:1.6em}#aloha-bb-help-nodes .aloha-bb-contract-term-heading span{background-color:#fff;padding:0 10px 0 10px}#alohaAvailabilityUS_feature_div .availability a{text-decoration:none}#alohaPricingWidget a{text-decoration:none}#alohaAvailabilityUS_feature_div .availability{margin-top:-4px;margin-bottom:0}#alohaBuyBoxWidget .select-transaction-alert .a-icon-alert{top:18px;left:3px}#alohaBuyBoxWidget .select-transaction-alert .a-alert-container{padding-left:39px;width:290px}#alohaBuyBoxUS_feature_div #alohaBuyBoxWidget .contract-container .contract-term-heading a{text-decoration:none}#alohaBuyBoxUS_feature_div #alohaBuyBoxWidget .annual-contract-box .a-icon-popover{display:none}#alohaBuyBoxUS_feature_div #alohaBuyBoxWidget .contract-container .annual-contract-box{cursor:pointer;cursor:hand}#alohaBuyBoxUS_feature_div #alohaBuyBoxWidget .aloha-buybox-price{font-size:15px}#alohaBuyBoxUS_feature_div #alohaBuyBoxWidget #linkOffSection a{text-decoration:none}#alohaBuyBoxUS_feature_div .lockedUsedBuyboxContainer{padding-left:3.5%}#alohaBuyBoxUS_feature_div .alohaBuyboxUtilsNoWrap{white-space:nowrap}.hidden{display:none}.simo-no-padding{padding:0}.carrier-reviews-cell{padding-left:10px}.carrier-reviews-bordered-cell{border:1px dotted #ccc}.carrier-reviews-selected-cell{background-color:#ffd}#aloha-carrier-compatibility-modal-table-description{margin-top:10px;margin-bottom:14px}.aloha-carrier-compatibility-sortable-header.carrier{min-width:97px}.aloha-carrier-compatibility-sortable-header.compatibility{min-width:156px}.aloha-carrier-compatibility-sortable-header div{float:left}.aloha-carrier-compatibility-sortable-header i.a-icon{margin-left:10px;margin-top:4px}#aloha-carrier-compatibility-overview-table.a-bordered.a-vertical-stripes td:nth-child(2n),#aloha-carrier-compatibility-overview-table.a-bordered.a-vertical-stripes th:nth-child(2n){background-color:initial}#aloha-carrier-compatibility-modal-table.a-bordered.a-vertical-stripes td:nth-child(2n),#aloha-carrier-compatibility-modal-table.a-bordered.a-vertical-stripes th:nth-child(2n){background-color:initial}#aloha-carrier-compatibility-table.a-bordered.a-vertical-stripes th:nth-child(2n),.aloha-carrier-compatibility-table.a-bordered.a-vertical-stripes td:nth-child(2n){background-color:transparent}.aloha-carrier-compatibility-column-gray{background-color:#f6f6f6}.aloha-carrier-compatibility-modal-table-row .aloha-carrier-compatibility-tech-text,.aloha-carrier-compatibility-modal-table-row .carrier-name,.aloha-carrier-compatibility-modal-table-row .carrier-rating-summary{min-height:27px;display:inline-block;cursor:default}.aloha-carrier-compatibility-modal-table-row .aloha-carrier-compatibility-tech-text:first-line,.aloha-carrier-compatibility-modal-table-row .carrier-name:first-line,.aloha-carrier-compatibility-modal-table-row .carrier-rating-summary:first-line{line-height:27px}.aloha-carrier-compatibility-modal-table-row .aloha-carrier-compatibility-icon{margin-top:6px}.aloha-carrier-compatibility-check-icon{width:30px;height:27px;background-position:-318px -35px;background-image:url(https://images-na.ssl-images-amazon.com/images/G/01/AUIClients/AmazonUIBaseCSS-sprite_2x-8e7ef370dc28a214b3f490c9620f4ac501d5a864._V2_.png);background-repeat:no-repeat;background-size:400px 650px;display:inline-block;vertical-align:top}.aloha-carrier-compatibility-hidden{display:none}.aloha-buybox-spaced-link{margin-top:12px;margin-bottom:7px;text-align:center}.popover-tab and comes from the brand Unknown brand. It ranks 704,028 in Movies & TV ( and was released on Unknown date.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "f2adedbc870feda",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [],
   "source": [
    "i = 0\n",
    "for edge, edge_text in dict_edge.items():\n",
    "    node1 = edge.split(\"|\")[0]\n",
    "    node2 = edge.split(\"|\")[1]\n",
    "    node1_id = int(dict_num_to_id[node1])\n",
    "    node2_id = int(dict_num_to_id[node2])\n",
    "    edge1.append(node1_id)\n",
    "    edge2.append(node2_id)\n",
    "    text_nodes[node1_id] = \"reviewer\"\n",
    "    try:\n",
    "        text_nodes[node2_id] = dict_id_to_text[node2]\n",
    "    except:\n",
    "        text_nodes[node2_id] = \"item\"\n",
    "    text_edges.append(edge_text)\n",
    "    try:\n",
    "        text_node_labels[node2_id] = dictid_to_label[node2]\n",
    "    except:\n",
    "        text_node_labels[node2_id] = \"Unknown\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "3305934f1a11caa7",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [],
   "source": [
    "from torch_geometric.data import Data\n",
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "5030fa8672f2b177",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [],
   "source": [
    "edge_index = torch.tensor([edge1,edge2])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "21085a8a04df7062",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [],
   "source": [
    "new_data = Data(\n",
    "    edge_index=edge_index,\n",
    "    text_nodes=text_nodes,\n",
    "    text_edges=text_edges,\n",
    "    text_node_labels=text_node_labels,\n",
    "    edge_score=edge_score\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "d39601d90a0171c5",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data saved to ./processed/movie.pkl\n"
     ]
    }
   ],
   "source": [
    "import pickle\n",
    "output_file_path = '../processed/movie.pkl'\n",
    "with open(output_file_path, 'wb') as output_file:\n",
    "    pickle.dump(new_data, output_file)\n",
    "\n",
    "print(f\"Data saved to {output_file_path}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "60f52e9317cfad61",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Data(edge_index=[2, 1697533], text_nodes=[174012], text_edges=[1697533], text_node_labels=[174012], edge_score=[1697533])"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4aaa10c4d649044a",
   "metadata": {
    "collapsed": false,
    "is_executing": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}