ZhuofengLi commited on
Commit
238eb78
·
verified ·
1 Parent(s): 2e218ed

Delete Reddit

Browse files
Reddit/processed/reddit_graph.pkl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8aed3368b44889670caa82468ea6c78944c6eede3a03891c6b70b56d137db70f
3
- size 134
 
 
 
 
Reddit/raw/68841_tweets_multiclasses_filtered_0722_part1.npy DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fdc595c36f74073feeb9dea9af01a467dd64743ceec15442085d8c3f2f187339
3
- size 20623408
 
 
 
 
Reddit/raw/Reddit-processing.py DELETED
@@ -1,118 +0,0 @@
1
- import os
2
- import pandas as pd
3
- import math
4
- import pickle as pkl
5
- import torch
6
- from torch_geometric.data import Data
7
-
8
- # Get the directory of the current script
9
- script_dir = os.path.dirname(os.path.abspath(__file__))
10
- base_dir = os.path.dirname(script_dir)
11
- raw_dir = os.path.join(base_dir, 'processed/original')
12
-
13
- # Define the file path
14
- reddit_path = os.path.join(raw_dir, 'reddit_1m.csv')
15
-
16
- # Read the Reddit data
17
- df = pd.read_csv(reddit_path)
18
- print(df.shape)
19
-
20
- # Select required columns
21
- df_graph = df[['subreddit_id', 'subreddit', 'name', 'body', 'score', 'author', 'author_flair_text', 'distinguished']]
22
- df_graph.rename(columns={'name': 'post_id',
23
- 'body': 'post',
24
- 'author': 'user',
25
- 'author_flair_text': 'user_flair'},
26
- inplace=True, errors='raise')
27
-
28
- # Drop duplicates, deleted posts, and rows with NaN post_id
29
- df_graph = df_graph.drop_duplicates()
30
- df_graph = df_graph[df_graph['post'] != '[deleted]']
31
- df_graph = df_graph.dropna(subset=['post_id'])
32
- print(df_graph.shape)
33
- print(df_graph['post_id'].nunique())
34
-
35
- # Encode distinguished and user_flair
36
- df_graph['distinguished'] = df_graph['distinguished'].apply(lambda x: 0 if pd.isna(x) else 1)
37
- df_graph['user_flair'] = df_graph['user_flair'].apply(lambda x: "" if pd.isna(x) else x)
38
-
39
- text_nodes = []
40
-
41
- # Create sub_id2idx
42
- sub_id2idx = {}
43
- sub_nodes = []
44
- for _, row in df_graph.iterrows():
45
- sub_id = row['subreddit_id']
46
- if sub_id not in sub_nodes:
47
- sub_id2idx[sub_id] = len(sub_nodes)
48
- sub_nodes.append(sub_id)
49
- text_nodes.append(row['subreddit'])
50
- node_labels = [-1] * len(sub_nodes) # No labels
51
-
52
- print("Length of sub nodes:", len(sub_nodes))
53
- print("Sample sub node labels:", node_labels[:5])
54
- print("Sample sub node texts:", text_nodes[:5])
55
-
56
- # Create user_n2idx
57
- user_n2idx = {} # Username to index mapping
58
- user_nodes = []
59
- for _, row in df_graph.iterrows():
60
- user_n = row['user']
61
- if user_n in user_nodes: # Existing user: add new flair and update label
62
- if row['user_flair'] not in text_nodes[user_n2idx[user_n]]:
63
- text_nodes[user_n2idx[user_n]] += "\n" + row['user_flair']
64
- node_labels[user_n2idx[user_n]] = max(row['distinguished'], node_labels[user_n2idx[user_n]])
65
- else: # New user: add the user to user_n2idx
66
- user_n2idx[user_n] = len(user_nodes) + len(sub_nodes)
67
- user_nodes.append(user_n)
68
- text_nodes.append(row['user_flair'])
69
- node_labels.append(row['distinguished'])
70
-
71
- print("Length of user nodes:", len(user_nodes))
72
- print("Sample user node labels:", node_labels[-10:])
73
- print("Sample user node texts:", text_nodes[-10:])
74
-
75
- # Record edge information
76
- edge_index = [[], []]
77
- text_edges = []
78
- edge_scr_labels = [] # Continuous score
79
- edge_spe_labels = [] # Binary special label
80
- all_edges = set()
81
-
82
- for _, row in df_graph.iterrows():
83
- user_idx = user_n2idx[row['user']]
84
- sub_idx = sub_id2idx[row['subreddit_id']]
85
-
86
- if (user_idx, sub_idx) not in all_edges: # Only keep one edge between two nodes
87
- edge_index[0].append(user_idx)
88
- edge_index[1].append(sub_idx)
89
-
90
- text_edges.append(row['post'])
91
- edge_scr_labels.append(row['score'])
92
- edge_spe_labels.append(row['distinguished'])
93
-
94
- all_edges.add((user_idx, sub_idx))
95
-
96
- print("Length of edges:", len(edge_index[0]))
97
- print("Sample edge score labels:", edge_scr_labels[-10:])
98
- print("Sample edge special labels:", edge_spe_labels[-10:])
99
- print("Sample edge texts:", text_edges[-10:])
100
-
101
- edge_scr_labels = [0 if math.isnan(x) else x for x in edge_scr_labels]
102
- edge_spe_labels = [0 if math.isnan(x) else x for x in edge_spe_labels]
103
-
104
- # Save as torch data
105
- graph = Data(
106
- text_nodes=text_nodes,
107
- text_edges=text_edges,
108
- node_labels=torch.tensor(node_labels, dtype=torch.long),
109
- edge_index=torch.tensor(edge_index, dtype=torch.long),
110
- edge_score_labels=torch.tensor(edge_scr_labels, dtype=torch.long),
111
- edge_special_labels=torch.tensor(edge_spe_labels, dtype=torch.long),
112
- )
113
-
114
- output_file = os.path.join(base_dir, 'output/reddit_graph.pkl')
115
- with open(output_file, 'wb') as file:
116
- pkl.dump(graph, file)
117
-
118
- print(f"Data processing complete. Processed data saved to: {output_file}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reddit/raw/download_data.sh DELETED
@@ -1,24 +0,0 @@
1
- #!/bin/bash
2
-
3
- # Get the directory of the current script
4
- SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
5
- BASE_DIR="$(dirname "$SCRIPT_DIR")"
6
- RAW_DIR="$BASE_DIR/raw"
7
-
8
- # Create the raw directory
9
- mkdir -p "$RAW_DIR"
10
-
11
- # Define URLs of the files to be downloaded
12
- urls=(
13
- "https://github.com/YuweiCao-UIC/KPGNN/raw/main/datasets/Twitter/68841_tweets_multiclasses_filtered_0722_part1.npy"
14
- )
15
-
16
- # Download each file to the raw directory
17
- for url in "${urls[@]}"; do
18
- wget -P "$RAW_DIR" "$url"
19
- done
20
-
21
- echo "Download complete."
22
-
23
-
24
-